AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays

Yongkai Sun1Wenyuan Sun2Lihong Chen2Alan Meng3( )Guicun Li2Lei Wang3Jianfeng Huang4Aili Song5Zhenhui Zhang2Zhenjiang Li2( )
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi’an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
Qingdao Huanghai University, Qingdao 266000, China
Show Author Information

Graphical Abstract

Fluorination strategy significantly enhances the electrocatalytic performances of F-CoP nanoarrays (NAs)/copper foam (CF) for both hydrogen evolution and oxygen evolution reactions.

Abstract

Development of a general regulatory strategy for efficient overall water splitting remains a challenging task. Herein, a simple, cost-fairness, and general fluorination strategy is developed to realize surface reconstruction, heteroatom doping, and vacancies engineering over cobalt phosphide (CoP) for acquiring high-performance bifunctional electrocatalysts. Specifically, the surface of CoP nanoarrays (NAs) becomes rougher, meanwhile F doped into CoP lattice and creating amounts of P vacancies by fluorination, which caused the increase of active sites and regulation of charge distribution, resulting the excellent electrocatalyst performance of F-CoP NAs/copper foam (CF). The optimized F-CoP NAs/CF delivers a lower overpotential of only 35 mV at 10 mA·cm−2 for hydrogen evolution reaction (HER) and 231 mV at 50 mA·cm−2 for oxygen evolution reaction (OER), and the corresponding overall water splitting requires only 1.48 V cell voltage at 10 mA·cm−2, which are superior to the most state-of-the-art reported electrocatalysts. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4702_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Li, R. Q.; Wan, X. Y.; Chen, B. L.; Cao, R. Y.; Ji, Q. H.; Deng, J.; Qu, K. G.; Wang, X. B.; Zhu, Y. C. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chem. Eng. J. 2021, 409, 128240.

[2]

Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater. 2019, 31, 1901439.

[3]

Feng, L. L.; Li, S. N.; He, D. Y.; Cao, L. Y.; Li, G. D.; Guo, P. H.; Huang, J. F. Heterostructured VN/Mo2C nanoparticles as highly efficient pH-universal electrocatalysts toward the hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2021, 9, 15202–15211.

[4]

Wei, P.; Sun, X. P.; Wang, M. H.; Xu, J. H.; He, Z. M.; Li, X. G.; Cheng, F. Y.; Xu, Y.; Li, Q.; Han, J. T. et al. Construction of an N-decorated carbon-encapsulated W2C/WP heterostructure as an efficient electrocatalyst for hydrogen evolution in both alkaline and acidic media. ACS Appl. Mater. Interfaces 2021, 13, 53955–53964.

[5]

Bellani, S.; Antognazza, M. R.; Bonaccorso, F. Carbon-based photocathode materials for solar hydrogen production. Adv. Mater. 2019, 31, 1801446.

[6]

Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

[7]

Gautam, J.; Liu, Y.; Gu, J.; Ma, Z. Y.; Zha, J. J.; Dahal, B.; Zhang, L. N.; Chishti, A. N.; Ni, L. B.; Diao, G. W. et al. Fabrication of polyoxometalate anchored zinc cobalt sulfide nanowires as a remarkable bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2021, 31, 2106147.

[8]

Zhang, J. T.; Zhang, Z.; Ji, Y. F.; Yang, J. D.; Fan, K.; Ma, X. Z.; Wang, C.; Shu, R. Y.; Chen, Y. Surface engineering induced hierarchical porous Ni12P5-Ni2P polymorphs catalyst for efficient wide pH hydrogen production. Appl. Catal. B Environ. 2021, 282, 119609.

[9]
SunJ.DuL.SunB. Y.HanG. K.MaY. L.WangJ. J.HuoH.DuC. Y.YinG. P. Bifunctional LaMn0.3Co0.7O3 perovskite oxide catalyst for oxygen reduction and evolution reactions: The optimized eg electronic structures by manganese dopantACS Appl. Mater. Interfaces202012247172472510.1021/acsami.0c03983

Sun, J.; Du, L.; Sun, B. Y.; Han, G. K.; Ma, Y. L.; Wang, J. J.; Huo, H.; Du, C. Y.; Yin, G. P. Bifunctional LaMn0.3Co0.7O3 perovskite oxide catalyst for oxygen reduction and evolution reactions: The optimized eg electronic structures by manganese dopant. ACS Appl. Mater. Interfaces 2020, 12, 24717–24725.

[10]

Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

[11]

Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; Xi, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat Commun. 2021, 12, 1376.

[12]

Qu, G. X.; Wu, T. L.; Yu, Y. N.; Wang, Z. K.; Zhou, Y.; Tang, Z. D.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965.

[13]

Lin, C.; Wang, P. Y.; Jin, H. H.; Zhao, J. H.; Chen, D.; Liu, S. L.; Zhang, C. T.; Mu, S. C. An iron-doped cobalt phosphide nano-electrocatalyst derived from a metal-organic framework for efficient water splitting. Dalton Trans. 2019, 48, 16555–16561.

[14]

Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 256, 117893.

[15]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv. Mater. 2020, 32, 2002168.

[16]

Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.

[17]

Zhang, G. W.; Wang, B.; Bi, J. L.; Fang, D. Q.; Yang, S. C. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 5769–5778.

[18]

Pan, Y.; Sun, K. A.; Lin, Y.; Cao, X.; Cheng, Y. S.; Liu, S. J.; Zeng, L. Y.; Cheong, W. C.; Zhao, D.; Wu, K. L. et al. Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy 2019, 56, 411–419.

[19]

Xiong, B. Y.; Chen, L. S.; Shi, J. L. Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 2018, 8, 3688–3707.

[20]

Lu, X. Y.; Yim, W. L.; Suryanto, B. H.; R.; Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 2901–2907.

[21]

Pande, S.; Huang, W.; Shao, N.; Wang, L. M.; Khetrapal, N.; Mei, W. N.; Jian, T.; Wang, L. S.; Zeng, X. C. Structural evolution of core-shell gold nanoclusters: Aun(n = 42−50). ACS Nano 2016, 10, 10013–10022.

[22]

Liu, Z. H.; Tan, H.; Xin, J. P.; Duan, J. Z.; Su, X. W.; Hao, P.; Xie, J. F.; Zhan, J.; Zhang, J.; Wang, J. J. et al. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 3699–3706.

[23]

Xu, T. T.; Yang, L.; Li, J.; Usoltseva, N.; An, V.; Jin, X.; Zhang, C.; Zhang, X. L.; Liu, B. D. NH4F-induced morphology control of CoP nanostructures to enhance the hydrogen evolution reaction. Inorg. Chem. 2021, 60, 10781–10790.

[24]

Sun, Y. K.; Liu, T.; Li, Z. J.; Meng, A. L.; Li, G. C.; Wang, L.; Li, S. X. Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chem. Eng. J. 2022, 433, 133684.

[25]

Zha, M.; Pei, C. G.; Wang, Q.; Hu, G. Z.; Feng, L. G. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid. J. Energy Chem. 2020, 47, 166–171.

[26]
Wang, Q. Q.; Li, J. Q.; Li, Y. J.; Shao, G. M.; Jia, Z.; Shen, B. L. Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Res., in press, https://doi/org10.1007/s12274-022-4179-8.
[27]

Li, M.; Wang, S. L.; Wang, X. Z.; Tian, X. L.; Wu, X.; Zhou, Y. T.; Hua, G. Z.; Feng, L. G. Structure evolution from Fe2Ni MIL MOF to carbon confined O-doped FeNi/FeF2 via partial fluorination for improved oxygen evolution reaction. Chem. Eng. J. 2022, 442, 136165.

[28]

Liu, Z.; Liu, H.; Gu, X. C.; Feng, L. G. Oxygen evolution reaction efficiently catalyzed by a quasi-single-crystalline cobalt fluoride. Chem. Eng. J. 2020, 397, 125500.

[29]

Anjum, M. A. R.; Okyay, M. S.; Kim, M.; Lee, M. H.; Park, N.; Lee, J. S. Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy 2018, 53, 286–295.

[30]

Men, Y. N.; Li, P.; Yang, F. L.; Cheng, G. Z.; Chen, S. L.; Luo, W. Nitrogen-doped CoP as robust electrocatalyst for high-efficiency pH-universal hydrogen evolution reaction. Appl. Catal. B Environ. 2019, 253, 21–27.

[31]

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

[32]

He, Q.; Wan, Y. Y.; Jiang, H. L.; Pan, Z. W.; Wu, C. Q.; Wang, M.; Wu, X. J.; Ye, B. J.; Ajayan, P. M.; Song, L. Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Lett. 2018, 3, 1373–1380.

[33]

Zhou, X. C.; Gao, H.; Wang, Y. F.; Liu, Z.; Lin, J. Q.; Ding, Y. P vacancies-enriched 3D hierarchical reduced cobalt phosphide as a precursor template for defect engineering for efficient water oxidation. J. Mater. Chem. A 2018, 6, 14939–14948.

[34]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[35]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[36]

Xu, K.; Sun, Y. Q.; Li, X. L.; Zhao, Z. H.; Zhang, Y. Q.; Li, C. C.; Fan, H. J. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity. ACS Materials Lett. 2020, 2, 736–743.

[37]

Yuan, G. J.; Bai, J. L.; Zhang, L.; Chen, X.; Ren, L. L. The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali. Appl. Catal. B Environ. 2021, 284, 119693.

[38]

Xu, J. Y.; Liu, T. F.; Li, J. J.; Li, B.; Liu, Y. F.; Zhang, B. S.; Xiong, D. H.; Amorim, I.; Li, W.; Liu, L. F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819–1827.

[39]

Wu, Y. T.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.

[40]

Zhou, G. Y.; Li, M.; Li, Y. L.; Dong, H.; Sun, D. M.; Liu, X. E.; Xu, L.; Tian, Z. Q.; Tang, Y. W. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting. Adv. Funct. Mater. 2020, 30, 1905252.

[41]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core−shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[42]

Tan, Y.; Che, Q. J.; Li, Q. Constructing double-layer CoP/CeO2-FeOxH hybrid catalysts for alkaline and neutral water splitting. ACS Sustainable Chem. Eng. 2021, 9, 11981–11990.

[43]

Liu, Z.; Yu, X.; Xue, H. G.; Feng, L. G. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2019, 7, 13242–13248.

[44]

Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412–419.

[45]

Liu, H. T.; Guan, J. Y.; Yang, S. X.; Yu, Y. H.; Shao, R.; Zhang, Z. P.; Dou, M. L.; Wang, F.; Xu, Q. Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv Mater. 2020, 32, 2003649.

[46]

Fang, H. Y.; Huang, T. Z.; Sun, Y.; Kang, B. T.; Liang, D.; Yao, S.; Yu, J. M.; Dinesh, M. M.; Wu, S.; Lee, J. Y. et al. Metal-organic framework-derived core−shell-structured nitrogen-doped CoCx/FeCo@C hybrid supported by reduced graphene oxide sheets as high performance bifunctional electrocatalysts for ORR and OER. J Catal. 2019, 371, 185–195.

[47]

Li, B. L.; Li, Z. S.; Pang, Q.; Zhang, J. Z. Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting. Chem. Eng. J. 2020, 401, 126045.

[48]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Li, P.; Sun, B.; Gao, X. C.; Yan, K.; Liu, H.; Duan, Y.; Gao, M. R. et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy 2020, 71, 104652.

[49]

Ouyang, Y. X.; Ling, C. Y.; Chen, Q.; Wang, Z. L.; Shi, L.; Wang, J. L. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater. 2016, 28, 4390–4396.

[50]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

[51]

Chang, Y.; Cheng, Y.; Feng, Y. L.; Li, K.; Jian, H.; Zhang, H. Y. Upshift of the d band center toward the fermi level for promoting silver ion release, bacteria inactivation, and wound healing of alloy silver nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 12224–12231.

[52]

Su, L. X.; Gong, D.; Yao, N.; Li, Y. B.; Li, Z.; Luo, W. Modification of the intermediate binding energies on Ni/Ni3N heterostructure for enhanced alkaline hydrogen oxidation reaction. Adv. Funct. Mater. 2021, 31, 2106156.

[53]

Cheng, Y. C.; Fan, X.; Liao, F.; Lu, S. K.; Li, Y. Y.; Liu, L. B.; Li, Y. Q.; Lin, H. P.; Shao, M. W.; Lee, S. T. Os/Si nanocomposites as excellent hydrogen evolution electrocatalysts with thermodynamically more favorable hydrogen adsorption free energy than platinum. Nano Energy 2017, 39, 284–290.

[54]

Quan, L.; Li, S. H.; Zhao, Z. P.; Liu, J. Q.; Ran, Y.; Cui, J. Y.; Lin, W.; Yu, X. L.; Wang, L.; Zhang, Y. H. et al. Hierarchically assembling CoFe prussian blue analogue nanocubes on CoP nanosheets as highly efficient electrocatalysts for overall water splitting. Small Methods 2021, 5, 2100125.

[55]

Guo, Y. N.; Tang, J.; Henzie, J.; Jiang, B.; Xia, W.; Chen, T.; Bando, Y.; Kang, Y. M.; Hossain, M. S. A.; Sugahara, Y. et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 2020, 14, 4141–4152.

[56]

Guan, S. D.; Fu, X. L.; Lao, Z. Z.; Jin, C. H.; Peng, Z. J. NiS-MoS2 hetero-nanosheet array electrocatalysts for efficient overall water splitting. Sustain. Energy Fuels 2019, 3, 2056–2066.

[57]

Wu, A. P.; Xie, Y.; Ma, H.; Tian, C. G.; Gu, Y.; Yan, H. J.; Zhang, X. M.; Yang, G. Y.; Fu, H. G. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363.

[58]

Qian, Y. T.; Yu, J. M.; Zhang, Y.; Zhang, F. F.; Kang, Y. B.; Su, C. L.; Shi, H.; Kang, D. J.; Pang, H. Interfacial microenvironment modulation enhancing catalytic kinetics of binary metal sulfides heterostructures for advanced water splitting electrocatalysts. Small Methods 2022, 6, 2101186.

[59]

Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

Nano Research
Pages 228-238
Cite this article:
Sun Y, Sun W, Chen L, et al. Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays. Nano Research, 2023, 16(1): 228-238. https://doi.org/10.1007/s12274-022-4702-y
Topics:

1200

Views

40

Crossref

32

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 18 April 2022
Revised: 05 June 2022
Accepted: 26 June 2022
Published: 02 August 2022
© Tsinghua University Press 2022
Return