AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Homojunction photocatalysts for water splitting

Xiangjiu Guan1,2Shichao Zong3Shaohua Shen1( )
International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Suzhou Academy of Xi’an Jiaotong University, Suzhou 215123, China
Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang’an University, Xi’an 710064, China
Show Author Information

Graphical Abstract

Methods for the construction of homojunction-based photocatalyst and the recent progress in water splitting are summarized and discussed.

Abstract

Charge-carrier separation is regarded as one of the critical issues of photocatalytic water splitting and could be accelerated by constructing microscopic junctions in photocatalysts. Homojunction photocatalysts consisting of different forms of semiconductor with identical compositions could inherit the advantages of heterojunction-based photocatalysts in charge separation due to the built-in electric field, while omitting the potential drawbacks of interfacial lattice distortion by providing continuous band bonding. Therefore, homojunction-based photocatalysts have recently drawn growing attention in water splitting. In this review, the synthetic approaches to preparing photocatalysts with various homojunction structures including p-n junction, phase junction, and facet junction were introduced, together with a comprehensive analysis and discussion on the latest progress in the application of photocatalytic water splitting. This review work is expected to inspire more related work with promoted research on designing efficient homojunction-based photocatalytic systems for water splitting.

References

[1]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[2]

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

[3]

Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonic 2012, 6, 511–518.

[4]

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

[5]

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Rev. Soc. 2009, 38, 253–278.

[6]

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

[7]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[8]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[9]

Guan, X. J.; Chowdhury, F. A.; Wang, Y. J.; Pant, N.; Vanka, S.; Trudeau, M. L.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Making of an industry-friendly artificial photosynthesis device. ACS Energy Lett. 2018, 3, 2230–2231.

[10]

Guan, X. J.; Chowdhury, F. A.; Pant, N.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 2018, 122, 13797–13802.

[11]

Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.

[12]

Wang, Q.; Hisatomi, T.; Jia, Q. X.; Tokudome, H.; Zhong, M.; Wang, C. Z.; Pan, Z. H.; Takata, T.; Nakabayashi, M.; Shibata, N. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615.

[13]

Song, H.; Luo, S. Q.; Huang, H. M.; Deng, B. W.; Ye, J. H. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives. ACS Energy Lett. 2022, 7, 1043–1065.

[14]

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

[15]

Djurišić, A. B.; He, Y. L.; Ng, A. M. C. Visible-light photocatalysts: Prospects and challenges. APL Mater. 2020, 8, 030903.

[16]

Dai, A. N.; Huang, Z. X.; Tian, L.; Zhang, Z. Y.; Guan, X. J.; Guo, L. J. Phenyl-incorporated carbon nitride photocatalyst with extended visible-light-absorption for enhanced hydrogen production from water splitting. J. Colloid Interface Sci. 2022, 622, 494–502.

[17]

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295.

[18]

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

[19]

Yang, J. H.; Wang, D.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

[20]

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

[21]

Serpone, N.; Emeline, A. V.; Ryabchuk, V. K.; Kuznetsov, V. N.; Artem’ev, Y. M.; Horikoshi, S. Why do hydrogen and oxygen yields from semiconductor-based photocatalyzed water splitting remain disappointingly low? Intrinsic and extrinsic factors impacting surface redox reactions. ACS Energy Lett. 2016, 1, 931–948.

[22]

Bai, S.; Jiang, W. Y.; Li, Z. Q.; Xiong, Y. J. Surface and interface engineering in photocatalysis. ChemNanoMat 2015, 1, 223–239.

[23]

Xu, Y. X.; Li, A. L.; Yao, T. T.; Ma, C. T.; Zhang, X. W.; Shah, J. H.; Han, H. X. Strategies for efficient charge separation and transfer in artificial photosynthesis of solar fuels. ChemSusChem 2017, 10, 4277–4305.

[24]

Min, Y.; Im, E.; Hwang, G. T.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H.; Yoon, W. H.; Park, D. S. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res. 2019, 12, 1750–1769.

[25]

Yang, K.; Li, X. X.; Yu, C. L.; Zeng, D. B.; Chen, F. Y.; Zhang, K. L.; Huang, W. Y.; Ji, H. B. Review on heterophase/homophase junctions for efficient photocatalysis: The case of phase transition construction. Chin. J. Catal. 2019, 40, 796–818.

[26]

Phang, S. J.; Wong, V. L.; Tan, L. L.; Chai, S. P. Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Appl. Mater. Today 2020, 20, 100741.

[27]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[28]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[29]

Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

[30]

Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

[31]

Nowotny, J.; Bak, T.; Nowotny, M.; Sheppard, L. Titanium dioxide for solar-hydrogen I. Functional properties. Int. J. Hydrogen Energy 2007, 32, 2609–2629.

[32]

Bak, T.; Jasiuk, I.; Sigmund, W. M.; Yamawaki, M.; Nowotny, J. Defect chemistry of titanium dioxide: Evidence of the n-p transition during cooling. J. Phys. Chem. C 2022, 126, 5014–5021.

[33]

Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Common. 2020, 11, 418.

[34]

Pan, L.; Wang, S. B.; Xie, J. W.; Wang, L.; Zhang, X. W.; Zou, J. J. Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 2016, 28, 296–303.

[35]

Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

[36]

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

[37]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[38]

Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A review. Appl. Catal. B-Environ. 2017, 217, 388–406.

[39]

Deng, Q. H.; Li, H. P.; Ba, G. M.; Huo, T. T.; Hou, W. G. The pivotal role of defects in fabrication of polymeric carbon nitride homojunctions with enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 586, 748–757.

[40]

Liao, Y. W.; Wang, G. H.; Wang, J.; Wang, K.; Yan, S. D.; Su, Y. R. Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 2021, 587, 110–120.

[41]

Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

[42]

Zhao, G.; Hao, S. H.; Guo, J. H.; Xing, Y. P.; Zhang, L.; Xu, X. J. Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting. Chin. J. Catal. 2021, 42, 501–509.

[43]

Ai, Z. Z.; Shao, Y. L.; Chang, B.; Zhang, L.; Shen, J. X.; Wu, Y. Z.; Huang, B. B.; Hao, X. P. Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Appl. Catal. B-Environ. 2019, 259, 118077.

[44]

Bai, S.; Gao, C.; Low, J.; Xiong, Y. J. Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 2019, 12, 2031–2054.

[45]

Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

[46]

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

[47]

Jin, S. Q.; Wang, X.; Wang, X. L.; Ju, M. G.; Shen, S.; Liang, W. Z.; Zhao, Y.; Feng, Z. C.; Playford, H. Y.; Walton, R. I. et al. Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example. J. Phys. Chem. C 2015, 119, 18221–18228.

[48]

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

[49]

Zhang, K.; Guo, L. J. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672–1690.

[50]

Wang, R. M.; Wan, J.; Jia, J.; Xue, W. H.; Hu, X. Y.; Liu, E. Z.; Fan, J. Synthesis of In2Se3 homojunction photocatalyst with α and γ phases for efficient photocatalytic performance. Mater. Design 2018, 151, 74–82.

[51]

Du, P. P.; Niu, P.; Yang, Y. Q.; Chen, R. T.; Yin, L. C.; Fan, F. T.; Liu, G. Constructing anatase-brookite TiO2 phase junction by thermal topotactic transition to promote charge separation for superior photocatalytic H2 generation. J. Phys. Chem. Lett. 2022, 13, 4244–4250.

[52]

Yang, G.; Ding, H.; Feng, J. J.; Hao, Q.; Sun, S. J.; Ao, W. H.; Chen, D. M. Highly performance core–shell TiO2(B)/anatase homojunction nanobelts with active cobalt phosphide cocatalyst for hydrogen production. Sci. Rep. 2017, 7, 14594.

[53]

Ruan, X. W.; Cui, X. Q.; Cui, Y.; Fan, X. F.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Jia, G. R.; Zhang, H. Y.; Zhang, L. et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 2200298.

[54]

Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem. 2012, 124, 13266–13269.

[55]

Cheng, G.; Wei, Y.; Xiong, J. Y.; Gan, Y. X.; Zhu, J. X.; Xu, F. F. Same titanium glycolate precursor but different products: Successful synthesis of twinned anatase TiO2 nanocrystals with excellent solar photocatalytic hydrogen evolution capability. Inorg. Chem. Front. 2017, 4, 1319–1329.

[56]

Sun, S. D.; Zhang, X. C.; Cui, J.; Yang, Q.; Liang, S. H. Twin engineering of photocatalysts: A minireview. Catal. Sci. Technol. 2020, 10, 4164–4178.

[57]

Liu, M. C.; Wang, L. Z.; Lu, G. M.; Yao, X. D.; Guo, L. J. Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372–1378.

[58]

Liu, M. C.; Jing, D. W.; Zhou, Z. H.; Guo, L. J. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.

[59]

Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.

[60]

Ng, B. J.; Putri, L. K.; Kong, X. Y.; Pasbakhsh, P.; Chai, S. P. Overall pure water splitting using one-dimensional P-doped twinned Zn0.5Cd0.5S1−x nanorods via synergetic combination of long-range ordered homojunctions and interstitial S vacancies with prolonged carrier lifetime. Appl. Catal. B-Environ. 2020, 262, 118309.

[61]

Liu, F.; Xue, F.; Si, Y. T.; Chen, G. J.; Guan, X. J.; Lu, K. J.; Liu, M. C. Functionalized Cd0.5Zn0.5S chalcogenide nanotwins enabling Z-scheme photocatalytic water splitting. ACS Appl. Nano Mater. 2021, 4, 759–768.

[62]

Yan, J. S.; Hu, L. Q.; Cui, L. K.; Shen, Q. Q.; Liu, X. G.; Jia, H. S.; Xue, J. B. Synthesis of disorder-order TaON homojunction for photocatalytic hydrogen generation under visible light. J. Mater. Sci. 2021, 56, 9791–9806.

[63]

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

[64]

Lü, X. J.; Chen, A. P.; Luo, Y. K.; Lu, P.; Dai, Y. M.; Enriquez, E.; Dowden, P.; Xu, H. W.; Kotula, P. G.; Azad, A. K. et al. Conducting interface in oxide homojunction: Understanding of superior properties in black TiO2. Nano Lett. 2016, 16, 5751–5755.

[65]

Liu, Z. G.; Wang, G.; Chen, H. S.; Yang, P. An amorphous/crystalline g-C3N4 homojunction for visible light photocatalysis reactions with superior activity. Chem. Commun. 2018, 54, 4720–4723.

[66]

Li, J. Q.; Liu, X. T.; Che, H. N.; Liu, C. B.; Li, C. X. Facile construction of O-doped crystalline/non-crystalline g-C3N4 embedded nano-homojunction for efficiently photocatalytic H2 evolution. Carbon 2021, 172, 602–612.

[67]

Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

[68]

Liu, Y.; Tian, L. H.; Tan, X. Y.; Li, X.; Chen, X. B. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 2017, 62, 431–441.

[69]

Kang, J. X.; Zhang, Y.; Chai, Z. W.; Qiu, X. Y.; Cao, X. Z.; Zhang, P.; Teobaldi, G.; Liu, L. M.; Guo, L. Amorphous domains in black titanium dioxide. Adv. Mater. 2021, 33, 2100407.

[70]

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

[71]

Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492.

[72]

Yang, S.; Yang, B. X.; Wu, L.; Li, Y. H.; Liu, P. R.; Zhao, H. J.; Yu, Y. Y.; Gong, X. Q.; Yang, H. G. Titania single crystals with a curved surface. Nat. Commun. 2014, 5, 5355.

[73]

Bi, Y. P.; Hu, H. Y.; Ouyang, S. X.; Lu, G. X.; Cao, J. Y.; Ye, J. H. Photocatalytic and photoelectric properties of cubic Ag3PO4 sub-microcrystals with sharp corners and edges. Chem. Commun. 2012, 48, 3748–3750.

[74]

Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.

[75]

Sajan, C. P.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G.; Cao, S. W. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27.

[76]

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

[77]

Zhang, A. Y.; Wang, W. Y.; Chen, J. J.; Liu, C.; Li, Q. X.; Zhang, X.; Li, W. W.; Si, Y.; Yu, H. Q. Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ. Sci. 2018, 11, 1444–1448.

[78]

Zheng, Z. K.; Huang, B. B.; Lu, J. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Hierarchical TiO2 microspheres: Synergetic effect of {001} and {101} facets for enhanced photocatalytic activity. Chem.—Eur. J. 2011, 17, 15032–15038.

[79]

Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 6751–6761.

[80]

Li, R. G.; Zhang, F. X.; Wang, D.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

[81]

Tan, H. L.; Tahini, H. A.; Wen, X. M.; Wong, R. J.; Tan, X.; Iwase, A.; Kudo, A.; Amal, R.; Smith, S. C.; Ng, Y. H. Interfacing BiVO4 with reduced graphene oxide for enhanced photoactivity: A tale of facet dependence of electron shuttling. Small 2016, 12, 5295–5302.

[82]

Gogoi, D.; Shah, A. K.; Rambabu, P.; Qureshi, M.; Golder, A. K.; Peela, N. R. Step-scheme heterojunction between CdS nanowires and facet-selective assembly of MnOx-BiVO4 for an efficient visible-light-driven overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 45475–45487.

[83]

Hu, J. D.; Chen, C.; Zheng, Y.; Zhang, G. P.; Guo, C. X.; Li, C. M. Spatially separating redox centers on Z-scheme ZnIn2S4/BiVO4 hierarchical heterostructure for highly efficient photocatalytic hydrogen evolution. Small 2020, 16, 2002988.

[84]

Qu, J.; Yang, X.; Guo, C.; Cai, Y.; Li, Z.; Hu, J.; Li, C. M. Construction of BiVO4/NiCo2O4 nanosheet Z-scheme heterojunction for highly boost solar water oxidation. J. Colloid Interface Sci. 2022, 613, 265–275.

[85]

Zhu, J.; Fan, F. T.; Chen, R. T.; An, H. Y.; Feng, Z. C.; Li, C. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem. 2015, 127, 9239–9242.

[86]

Li, R. G.; Han, H. X.; Zhang, F. X.; Wang, D. E.; Li, C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ. Sci. 2014, 7, 1369–1376.

[87]

Qi, Y.; Zhang, J. W.; Kong, Y.; Zhao, Y.; Chen, S. S.; Li, D.; Liu, W.; Chen, Y. F.; Xie, T. F.; Cui, J. Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commum. 2022, 13, 484.

[88]

Wang, B.; Shen, S. H.; Guo, L. J. SrTiO3 single crystals enclosed with high-indexed {023} facets and {001} facets for photocatalytic hydrogen and oxygen evolution. Appl. Catal. B-Environ. 2015, 166–167, 320–326.

[89]

Mu, L. C.; Zhao, Y.; Li, A. L.; Wang, S. Y.; Wang, Z. L.; Yang, J. X.; Wang, Y.; Liu, T. F.; Chen, R. T.; Zhu, J. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 2016, 9, 2463–2469.

[90]

Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307.

[91]

Xing, W. N.; Zhang, Y. C.; Zou, J. H.; Zhang, T. T.; Liu, C. K.; Wu, G. Y.; Chen, G. Sulfur-doped 2D/3D carbon nitride-based van der Waals homojunction with superior photocatalytic hydrogen evolution and wastewater purification. Int. J. Hydrogen Energy 2022, 47, 12559–12568.

[92]

Li, S.; Ruan, L. Y.; Wang, S. P.; Wang, Z. Y.; Ren, Z. H.; Han, G. R. Surface energy-driven solution epitaxial growth of anatase TiO2 homostructures for overall water splitting. J. Mater. Sci. Technol. 2020, 46, 139–144.

[93]

Bai, Y.; Zhou, Y. E.; Zhang, J.; Chen, X. B.; Zhang, Y. H.; Liu, J. F.; Wang, J.; Wang, F. F.; Chen, C.; Li, C. D. et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting. ACS Catal. 2019, 9, 3242–3252.

[94]

Zhang, N. N.; Li, G. S.; Xie, T. F.; Li, L. P. Amorphous tantalum oxyhydroxide homojunction: In situ construction for enhanced hydrogen production. J. Colloid Interface Sci. 2018, 525, 196–205.

[95]

Yang, F.; Ba, G. M.; Wang, Z.; Li, H. P. Surface modification induced construction of core–shell homojunction of polymeric carbon nitride for boosted photocatalytic performance. J. Colloid Interface Sci. 2021, 594, 64–72.

[96]

Fu, W. L.; Guan, X. J.; Huang, Z. X.; Liu, M. C.; Guo, L. J. Efficient photocatalytic overall water splitting over a core–shell GaInZnON@GaInON homojunction. Appl. Catal. B-Environ. 2019, 255, 117741.

[97]

Fu, W. L.; Guan, X. J.; Si, Y. T.; Liu, M. C. Phosphatized GaZnInON nanocrystals with core–shell structures for efficient and stable pure water splitting via four-electron photocatalysis. Chem. Eng. J. 2021, 410, 128391.

[98]

Fu, W. L.; Guan, X. J.; Wu, H. C.; Liu, M. C. Switching from two-electron to four-electron photocatalytic pure water splitting via band bending engineering with boosted activity. Appl. Catal. B-Environ. 2022, 305, 121054.

[99]

Pan, Z. M.; Zhao, M.; Zhuzhang, H.; Zhang, G. G.; Anpo, M.; Wang, X. C. Gradient Zn-doped poly heptazine imides integrated with a van der Waals homojunction boosting visible light-driven water oxidation activities. ACS Catal. 2021, 11, 13463–13471.

[100]

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

[101]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

[102]

Fang, Z. Y.; Bai, Y. J.; Li, L. H.; Li, D.; Huang, Y. Y.; Chen, R. J.; Fan, W. Q.; Shi, W. D. In situ constructing intramolecular ternary homojunction of carbon nitride for efficient photoinduced molecular oxygen activation and hydrogen evolution. Nano Energy 2020, 75, 104865.

Nano Research
Pages 10171-10184
Cite this article:
Guan X, Zong S, Shen S. Homojunction photocatalysts for water splitting. Nano Research, 2022, 15(12): 10171-10184. https://doi.org/10.1007/s12274-022-4704-9
Topics:
Part of a topical collection:

1575

Views

57

Crossref

54

Web of Science

58

Scopus

2

CSCD

Altmetrics

Received: 14 May 2022
Revised: 21 June 2022
Accepted: 25 June 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return