AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels

Qian Wang1,2( )Zhenhua Pan3
Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Department of Applied Chemistry, Faculty of Science and Technology, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
Show Author Information

Graphical Abstract

Heterogeneous solar fuel production systems are multi-component, comprising photosensitizer and catalytic unit, which is termed “cocatalyst”. This review presents a comprehensive summary of the recent advancements in cocatalysts for photocatalytic CO2 reduction to provide new insights and guidance to the field with regard to research directions and best practices.

Abstract

The global adoption of efficient sustainable energy sources is a crucial step toward meeting energy demands while achieving carbon emission reduction targets. Solar energy has become a clean and cost-competitive alternative to traditional fossil fuels, but the intermittent nature of sunlight results in challenges associated with energy storage and transport. Photocatalytic carbon dioxide reduction intends to mimic natural photosynthesis for utilizing sunlight to chemically convert water and CO2 into fuels. In this process, the solar energy is captured and stored in fuels, so-called solar fuels, for widespread on-demand use. Heterogeneous solar fuel production systems are multi-component, comprising light-harvesting (photosensitizer) and catalytic (cocatalyst) units. Cocatalysts are indispensable for photocatalytic CO2 reduction systems, which promote charge carrier separation and transport, reduce the reaction activation energy, and alter the reaction route, thereby enhancing the activity and selectivity of the photocatalytic reactions. This review presents a comprehensive summary of the recent advancements in cocatalysts for photocatalytic CO2 reduction reaction (CO2RR), with the purpose of providing new insights and guidance to the field with regard to research directions and best practices. We summarize how various cocatalysts including inorganic nanoparticles, metal complexes, enzymes, and bacteria can be combined with semiconductor photosensitizer for light-driven photocatalytic CO2RR. Side-by-side comparisons reveal the strengths and limitations of each kind of cocatalysts and how lessons extracted from studying natural photosynthetic systems can be applied to investigations of artificial photosynthesis, presenting an outlook discussing possible future concepts for a more effective photocatalytic CO2 reduction process.

References

[1]

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

[2]

Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Strategies to improve light utilization in solar fuel synthesis. Nat. Energy 2022, 7, 13–24.

[3]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[4]

You, J. K.; Xiao, M.; Wang, Z. L.; Wang, L. Z. Non-noble metal-based cocatalysts for photocatalytic CO2 reduction. J. CO2 Util. 2022, 55, 101817.

[5]

Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

[6]

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

[7]

Lai, T. H.; Katsumata, K. I.; Hsu, Y. J. In situ charge carrier dynamics of semiconductor nanostructures for advanced photoelectrochemical and photocatalytic applications. Nanophotonics 2020, 10, 777–795.

[8]

Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937.

[9]

Zhang, Y. Z.; Xia, B. Q.; Ran, J. R.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.

[10]

Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 2019, 119, 2752–2875.

[11]

Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.

[12]

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

[13]

Matsubara, Y.; Grills, D. C.; Kuwahara, Y. Thermodynamic aspects of electrocatalytic CO2 reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catal. 2015, 5, 6440–6452.

[14]

Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81.

[15]

Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Molecular artificial photosynthesis. Chem. Soc. Rev. 2014, 43, 7501–7519.

[16]

Fujita, E. Photochemical carbon dioxide reduction with metal complexes. Coord. Chem. Rev. 1999, 185–186, 373–384.

[17]

Liu, X.; Inagaki, S.; Gong, J. L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem., Int. Ed. 2016, 55, 14924–14950.

[18]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[19]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[20]

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

[21]

Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J. Electroanal. Chem. 1995, 396, 21–26.

[22]

Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225–273.

[23]

White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

[24]

Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2 (101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902.

[25]

Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828.

[26]

Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

[27]

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

[28]

Kong, X. Y.; Choo, Y. Y.; Chai, S. P.; Soh, A. K.; Mohamed, A. R. Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: From the UV to the NIR region. Chem. Commun. 2016, 52, 14242–14245.

[29]

Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847–14851.

[30]

Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.

[31]

Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

[32]

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

[33]

Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

[34]

Tu, W. G.; Xu, Y.; Wang, J. J.; Zhang, B. W.; Zhou, T. H.; Yin, S. M.; Wu, S. Y.; Li, C. M.; Huang, Y. Z.; Zhou, Y. et al. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustainable Chem. Eng. 2017, 5, 7260–7268.

[35]

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

[36]

Woolerton, T. W.; Sheard, S.; Chaudhary, Y. S.; Armstrong, F. A. Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy Environ. Sci. 2012, 5, 7470–7490.

[37]

Zhu, S. S.; Wang, D. W. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 2017, 7, 1700841.

[38]

Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 1989, 22, 163–170.

[39]

Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J. Photochem. Photobiol. A: Chem. 1993, 72, 269–271.

[40]

Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal. Today 1998, 44, 327–332.

[41]

Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101, 2632–2636.

[42]

Feng, X. J.; Sloppy, J. D.; LaTempa, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem. 2011, 21, 13429–13433.

[43]

Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

[44]

Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

[45]

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 2015, 44, 1249–1257.

[46]

Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

[47]

Jo, S. W.; Kwak, B. S.; Kim, K. M.; Do, J. Y.; Park, N. K.; Ryu, S. O.; Ryu, H. J.; Baek, J. I.; Kang, M. Effectively CO2 photoreduction to CH4 by the synergistic effects of Ca and Ti on Ca-loaded TiSiMCM-41 mesoporous photocatalytic systems. Appl. Surf. Sci. 2015, 355, 891–901.

[48]

Jeong, S.; Kim, W. D.; Lee, S.; Lee, K.; Lee, S.; Lee, D.; Lee, D. C. Bi2O3 as a promoter for Cu/TiO2 photocatalysts for the selective conversion of carbon dioxide into methane. ChemCatChem 2016, 8, 1641–1645.

[49]

Xie, S. J.; Wang, Y.; Zhang, Q. H.; Fan, W. Q.; Deng, W. P.; Wang, Y. Photocatalytic reduction of CO2 with H2O: Significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem. Commun. 2013, 49, 2451–2453.

[50]

Meng, X. G.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.

[51]

Matsumoto, Y.; Obata, M.; Hombo, J. Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder. J. Phys. Chem. 1994, 98, 2950–2951.

[52]

Sun, Z. X.; Fischer, J. M. T. A.; Li, Q.; Hu, J.; Tang, Q. J.; Wang, H. Q.; Wu, Z. B.; Hankel, M.; Searles, D. J.; Wang, L. Z. Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Appl. Catal. B: Environ. 2017, 216, 146–155.

[53]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[54]

Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094–6097.

[55]

Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl. Mat. Interfaces 2011, 3, 2594–2600.

[56]

Wang, S. Y.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Optimized synthesis of Ag-modified Al-doped SrTiO3 photocatalyst for the conversion of CO2 using H2O as an electron donor. ChemistrySelect 2020, 5, 8779–8786.

[57]

Baran, T.; Wojtyła, S.; Dibenedetto, A.; Aresta, M.; Macyk, W. Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2015, 178, 170–176.

[58]

AlOtaibi, B.; Fan, S. Z.; Wang, D. F.; Ye, J. H.; Mi, Z. T. Wafer-level artificial photosynthesis for CO2 reduction into CH4 and CO using GaN nanowires. ACS Catal. 2015, 5, 5342–5348.

[59]

Zhou, H.; Guo, J. J.; Li, P.; Fan, T. X.; Zhang, D.; Ye, J. H. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.

[60]

Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014, 4, 3644–3653.

[61]
Chen, R.; Gao, G. D.; Luo, J. S. A water-stable organolead iodide material for overall photocatalytic CO2 reduction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4216-7.
[62]

Tseng, I. H.; Wu, J. C. S. Chemical states of metal-loaded titania in the photoreduction of CO2. Catal. Today 2004, 97, 113–119.

[63]

Park, H.; Ou, H. H.; Colussi, A. J.; Hoffmann, M. R. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. J. Phys. Chem. A 2015, 119, 4658–4666.

[64]

Shi, G. D.; Yang, L.; Liu, Z. W.; Chen, X.; Zhou, J. Q.; Yu, Y. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity. Appl. Surf. Sci. 2018, 427, 1165–1173.

[65]

Billo, T.; Fu, F. Y.; Raghunath, P.; Shown, I.; Chen, W. F.; Lien, H. T.; Shen, T. H.; Lee, J. F.; Chan, T. S.; Huang, K. Y. et al. Artificial photosynthesis: Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 2018, 14, 1870008.

[66]

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[67]

Li, X. G.; Bi, W. T.; Wang, Z.; Zhu, W. G.; Chu, W. S.; Wu, C. Z.; Xie, Y. Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction. Nano Res. 2018, 11, 3362–3370.

[68]

Zhang, Z. Y.; Wang, Z.; Cao, S. W.; Xue, C. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 2013, 117, 25939–25947.

[69]

Xiong, Z.; Wang, H. B.; Xu, N. Y.; Li, H. L.; Fang, B. Z.; Zhao, Y. C.; Zhang, J. Y.; Zheng, C. G. Photocatalytic reduction of CO2 on Pt2+-Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. Int. J. Hydrogen Energy 2015, 40, 10049–10062.

[70]

Uner, D.; Oymak, M. M. On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181, 82–88.

[71]

Takemoto, M.; Tokudome, Y.; Kikkawa, S.; Teramura, K.; Tanaka, T.; Okada, K.; Murata, H.; Nakahira, A.; Takahashi, M. Imparting CO2 reduction selectivity to ZnGa2O4 photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides. RSC Adv. 2020, 10, 8066–8073.

[72]

Wang, Z.; Teramura, K.; Huang, Z. A.; Hosokawa, S.; Sakata, Y.; Tanaka, T. Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. Catal. Sci. Technol. 2016, 6, 1025–1032.

[73]

Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

[74]

Takayama, T.; Iwase, A.; Kudo, A. Photocatalytic water splitting and CO2 reduction over KCaSrTa5O15 nanorod prepared by a polymerized complex method. Bull. Chem. Soc. Japan 2015, 88, 538–543.

[75]

Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Appl. Catal. B: Environ. 2015, 163, 241–247.

[76]

Fang, B. Z.; Bonakdarpour, A.; Reilly, K.; Xing, Y. L.; Taghipour, F.; Wilkinson, D. P. Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4. ACS Appl. Mater. Interfaces 2014, 6, 15488–15498.

[77]

Liu, L. J.; Pitts, D. T.; Zhao, H. L.; Zhao, C. Y.; Li, Y. Silver-incorporated bicrystalline (anatase/brookite) TiO2 microspheres for CO2 photoreduction with water in the presence of methanol. Appl. Catal. A: Gen. 2013, 467, 474–482.

[78]

Raskó, J. FTIR study of the photoinduced dissociation of CO2 on titania-supported noble metals. Catal. Lett. 1998, 56, 11–15.

[79]

Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

[80]

Zhang, X. J.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G. P.; Shankar, K. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem., Int. Ed. 2012, 51, 12732–12735.

[81]

Neaţu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

[82]

Lee, S.; Jeong, S.; Kim, W. D.; Lee, S.; Lee, K.; Bae, W. K.; Moon, J. H.; Lee, S.; Lee, D. C. Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2. Nanoscale 2016, 8, 10043–10048.

[83]

Kang, Q.; Wang, T.; Li, P.; Liu, L. Q.; Chang, K.; Li, M.; Ye, J. H. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem., Int. Ed. 2015, 54, 841–845.

[84]

Li, H. L.; Lei, Y. G.; Huang, Y.; Fang, Y. P.; Xu, Y. H.; Zhu, L.; Li, X. Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J. Nat. Gas Chem. 2011, 20, 145–150.

[85]

Júnior, M. A. M.; Morais, A.; Nogueira, A. F. Boosting the solar-light-driven methanol production through CO2 photoreduction by loading Cu2O on TiO2-pillared K2Ti4O9. Microporous Mesoporous Mater. 2016, 234, 1–11.

[86]

Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H.; Ehara, S.; Kikui, K.; Palmisano, L.; Sclafani, A. et al. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Res. Chem. Intermed. 1994, 20, 815–823.

[87]

Slamet; Nasution, H. W.; Purnama, E.; Kosela, S.; Gunlazuardi, J. Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catal. Commun. 2005, 6, 313–319.

[88]

Uzunova, E. L.; Seriani, N.; Mikosch, H. CO2 conversion to methanol on Cu(I) oxide nanolayers and clusters:An electronic structure insight into the reaction mechanism. Phys. Chem. Chem. Phys. 2015, 17, 11088–11094.

[89]

Zhu, S. Y.; Liang, S. J.; Tong, Y. C.; An, X. H.; Long, J. L.; Fu, X. Z.; Wang, X. X. Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets. Phys. Chem. Chem. Phys. 2015, 17, 9761–9770.

[90]

Wu, J. C. S.; Lin, H. M.; Lai, C. L. Photo reduction of CO2 to methanol using optical-fiber photoreactor. Appl. Catal. A: Gen. 2005, 296, 194–200.

[91]

Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134–135, 349–358.

[92]

Shoji, S.; Yin, G.; Nishikawa, M.; Atarashi, D.; Sakai, E.; Miyauchi, M. Photocatalytic reduction of CO2 by CuxO nanocluster loaded SrTiO3 nanorod thin film. Chem. Phys. Lett. 2016, 658, 309–314.

[93]

Torres, J. A.; Nogueira, A. E.; da Silva, G. T. S. T.; Lopes, O. F.; Wang, Y. J.; He, T.; Ribeiro, C. Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. J. CO2 Util. 2020, 35, 106–114.

[94]

Jeyalakshmi, V.; Mahalakshmy, R.; Krishnamurthy, K. R.; Viswanathan, B. Photocatalytic reduction of carbon dioxide in alkaline medium on La modified sodium tantalate with different co-catalysts under UV–visible radiation. Catal. Today 2016, 266, 160–167.

[95]

Tsai, C. W.; Chen, H. M.; Liu, R. S.; Asakura, K.; Chan, T. S. Ni@NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J. Phys. Chem. C 2011, 115, 10180–10186.

[96]

Dai, W. L.; Yu, J. J.; Deng, Y. Q.; Hu, X.; Wang, T. Y.; Luo, X. B. Facile synthesis of MoS2/Bi2WO6 nanocomposites for enhanced CO2 photoreduction activity under visible light irradiation. Appl. Surf. Sci. 2017, 403, 230–239.

[97]

Tu, W. G.; Li, Y. C.; Kuai, L. B.; Zhou, Y.; Xu, Q. F.; Li, H. J.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol. Nanoscale 2017, 9, 9065–9070.

[98]

Lee, H.; Kwak, B. S.; Park, N. K.; Baek, J. I.; Ryu, H. J.; Kang, M. Assembly of a check-patterned CuSx-TiO2 film with an electron-rich pool and its application for the photoreduction of carbon dioxide to methane. Appl. Surf. Sci. 2017, 393, 385–396.

[99]

Qin, H.; Guo, R. T.; Liu, X. Y.; Shi, X.; Wang, Z. Y.; Tang, J. Y.; Pan, W. G. 0D NiS2 quantum dots modified 2D g-C3N4 for efficient photocatalytic CO2 reduction. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 600, 124912.

[100]

Di, J.; Chen, C.; Zhu, C.; Song, P.; Duan, M. L.; Xiong, J.; Long, R.; Xu, M. Z.; Kang, L. X.; Guo, S. S. et al. Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 2021, 79, 105429.

[101]

Guo, Y. K.; Wang, Q.; Wang, M.; Shen, M.; Zhang, L. X.; Shi, J. L. FeP modified polymeric carbon nitride as a noble-metal-free photocatalyst for efficient CO2 reduction. Catal. Commun. 2021, 156, 106326.

[102]

Zhang, X. D.; Yan, J.; Zheng, F. Y.; Zhao, J.; Lee, L. Y. S. Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction. Appl. Catal. B: Environ. 2021, 286, 119879.

[103]

Zeng, Z. P.; Yan, Y. B.; Chen, J.; Zan, P.; Tian, Q. H.; Chen, P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 2018, 29, 1806500.

[104]

Chen, L. Y.; Huang, K. L.; Xie, Q. R.; Lam, S. M.; Sin, J. C.; Su, T. M.; Ji, H. B.; Qin, Z. Z. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal. Sci. Technol. 2021, 11, 1602–1614.

[105]

Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.

[106]

Chen, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896–8909.

[107]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[108]

Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

[109]

Pan, Z.; Rohr, J.; Ye, Z.; Fishman, Z.; Zhu, Q.; Shen, X.; Hu, S. Elucidating charge separation in particulate photocatalysts using nearly-intrinsic semiconductors with small asymmetric band bending. Sustain. Energy Fuels 2019, 3, 850–864.

[110]

Pan, Z. H.; Yanagi, R.; Wang, Q.; Shen, X.; Zhu, Q. H.; Xue, Y. D.; Röhr, J. A.; Hisatomi, T.; Domen, K.; Hu, S. Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy Environ. Sci. 2020, 13, 162–173.

[111]

Liu, T.; Pan, Z. H.; Vequizo, J. J. M.; Kato, K.; Wu, B. B.; Yamakata, A.; Katayama, K.; Chen, B. L.; Chu, C. H.; Domen, K. Overall photosynthesis of H2O2 by an inorganic semiconductor. Nat. Commun. 2022, 13, 1034.

[112]

Zhou, X. H.; Liu, R.; Sun, K.; Friedrich, D.; McDowell, M. T.; Yang, F.; Omelchenko, S. T.; Saadi, F. H.; Nielander, A. C.; Yalamanchili, S. et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ. Sci. 2015, 8, 2644–2649.

[113]

Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core–shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.

[114]

Manzi, A.; Simon, T.; Sonnleitner, C.; Döblinger, M.; Wyrwich, R.; Stern, O.; Stolarczyk, J. K.; Feldmann, J. Light-induced cation exchange for copper sulfide based CO2 reduction. J. Am. Chem. Soc. 2015, 137, 14007–14010.

[115]

Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: Robust catalysts for oxidation and reduction reactions. Angew. Chem., Int. Ed. 2014, 53, 250–254.

[116]

Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

[117]

Cao, S. W.; Yu, J. G. Carbon-based H2-production photocatalytic materials. J. Photochem. Photobiol. C: Photochem. Rev. 2016, 27, 72–99.

[118]

Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.; Wang, Z.; Ma, L. L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 2007, 45, 717–721.

[119]

Gui, M. M.; Chai, S. P.; Xu, B. Q.; Mohamed, A. R. Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energy Mater. Sol. Cells 2014, 122, 183–189.

[120]

Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

[121]

Tu, W. G.; Zhou, Y.; Liu, Q.; Yan, S. C.; Bao, S. S.; Wang, X. Y.; Xiao, M.; Zou, Z. G. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: Graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23, 1743–1749.

[122]

Liang, Y. T.; Vijayan, B. K.; Gray, K. A.; Hersam, M. C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett. 2011, 11, 2865–2870.

[123]

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 51, 858–861.

[124]

An, X. Q.; Li, K.; Tang, J. W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 2014, 7, 1086–1093.

[125]

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 2015, 13, 757–770.

[126]

Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed, A. R. Harnessing Vis–NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017, 10, 1720–1731.

[127]

Li, H. T.; Zhang, X. Y.; MacFarlane, D. R. Carbon quantum dots/Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2014, 5, 1401077.

[128]

Wang, Y. G.; Bai, X.; Qin, H. F.; Wang, F.; Li, Y. G.; Li, X.; Kang, S. F.; Zuo, Y. H.; Cui, L. F. Facile one-step synthesis of hybrid graphitic carbon nitride and carbon composites as high-performance catalysts for CO2 photocatalytic conversion. ACS Appl. Mater. Interfaces 2016, 8, 17212–17219.

[129]

Lu, Y. L.; Liu, M. H.; Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F. Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res. 2022, 15, 3042–3049.

[130]

Han, C. Q.; Li, J.; Ma, Z. Y.; Xie, H. Q.; Waterhouse, G. I. N.; Ye, L. Q.; Zhang, T. R. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci. China Mater. 2018, 61, 1159–1166.

[131]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[132]

Lee, B. H.; Park, S.; Kim, M.; Sinha, A. K.; Lee, S. C.; Jung, E.; Chang, W. J.; Lee, K. S.; Kim, J. H.; Cho, S. P. et al. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat. Mater. 2019, 18, 620–626.

[133]

Tong, T.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; Yu, J. G. Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4. Appl. Surf. Sci. 2018, 433, 1175–1183.

[134]

Yanagi, R.; Zhao, T. S.; Solanki, D.; Pan, Z. H.; Hu, S. Charge separation in photocatalysts: Mechanisms, physical parameters, and design principles. ACS Energy Lett. 2022, 7, 432–452.

[135]

Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

[136]

Ma, M. Z.; Huang, Z. A.; Doronkin, D. E.; Fa, W. J.; Rao, Z. Q.; Zou, Y. Z.; Wang, R.; Zhong, Y. Q.; Cao, Y. H.; Zhang, R. Y. et al. Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Appl. Catal. B: Environ. 2022, 300, 120695.

[137]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[138]

Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

[139]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[140]

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

[141]

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

[142]

Li, Y.; Li, B. H.; Zhang, D. N.; Cheng, L.; Xiang, Q. J. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity. ACS Nano 2020, 14, 10552–10561.

[143]

Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.

[144]
Shi, X. J.; Huang, Y.; Bo, Y. N.; Duan, D. L.; Wang, Z. Y.; Cao, J. J.; Zhu, G. Q.; Ho, W.; Wang, L. Q.; Huang, T. T. et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202203063.
[145]
Ou, H. H.; Ning, S. B.; Zhu, P.; Chen, S. H.; Han, A. L.; Kang, Q.; Hu, Z. F.; Ye, J. H.; Wang, D. S.; Li, Y. D. Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202206579.
[146]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[147]

Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569.

[148]

Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? Angew. Chem., Int. Ed. 2011, 50, 8510–8537.

[149]

Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 2009, 42, 1983–1994.

[150]

Leitner, W. The coordination chemistry of carbon dioxide and its relevance for catalysis: A critical survey. Coord. Chem. Rev. 1996, 153, 257–284.

[151]

Windle, C. D.; Reisner, E. Heterogenised molecular catalysts for the reduction of CO2 to fuels. Chimia 2015, 69, 435–441.

[152]

Bullock, R. M.; Das, A. K.; Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem.—Eur. J. 2017, 23, 7626–7641.

[153]

Coutard, N.; Kaeffer, N.; Artero, V. Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation. Chem. Commun. 2016, 52, 13728–13748.

[154]

McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.

[155]

Das, A. K.; Engelhard, M. H.; Lense, S.; Roberts, J. A. S.; Bullock, R. M. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition metallation with Ni(II). Dalton Trans. 2015, 44, 12225–12233.

[156]

Lydon, B. R.; Germann, A.; Yang, J. Y. Chemical modification of gold electrodes via non-covalent interactions. Inorg. Chem. Front. 2016, 3, 836–841.

[157]

Brennan, B. J.; Portolés, M. J. L.; Liddell, P. A.; Moore, T. A.; Moore, A. L.; Gust, D. Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 2013, 15, 16605–16614.

[158]

Leung, J. J.; Warnan, J.; Ly, K. H.; Heidary, N.; Nam, D. H.; Kuehnel, M. F.; Reisner, E. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2019, 2, 354–365.

[159]

Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138, 5159–5170.

[160]

Kumagai, H.; Sahara, G.; Maeda, K.; Higashi, M.; Abe, R.; Ishitani, O. Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(II)-Re(I) supramolecular photocatalyst: Non-biased visible-light-driven CO2 reduction with water oxidation. Chem. Sci. 2017, 8, 4242–4249.

[161]

Suzuki, T. M.; Yoshino, S.; Takayama, T.; Iwase, A.; Kudo, A.; Morikawa, T. Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1−xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chem. Commun. 2018, 54, 10199–10202.

[162]

Wang, Q.; Warnan, J.; Rodríguez-Jiménez, S.; Leung, J. J.; Kalathil, S.; Andrei, V.; Domen, K.; Reisner, E. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 2020, 5, 703–710.

[163]

Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D. L.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angew. Chem., Int. Ed. 2017, 56, 4867–4871.

[164]

Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

[165]

Lin, L.; Hou, C. C.; Zhang, X. H.; Wang, Y. J.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts. Appl. Catal. B: Environ. 2018, 221, 312–319.

[166]

Aoi, S.; Mase, K.; Ohkubo, K.; Fukuzumi, S. Photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt chlorin complex adsorbed on multi-walled carbon nanotubes. Catal. Sci. Technol. 2016, 6, 4077–4080.

[167]

Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisner, E. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water. Chem. Sci. 2018, 9, 2501–2509.

[168]

Lian, S. C.; Kodaimati, M. S.; Weiss, E. A. Photocatalytically active superstructures of quantum dots and iron porphyrins for reduction of CO2 to CO in water. ACS Nano 2018, 12, 568–575.

[169]

Neri, G.; Forster, M.; Walsh, J. J.; Robertson, C. M.; Whittles, T. J.; Farràs, P.; Cowan, A. J. Photochemical CO2 reduction in water using a co-immobilised nickel catalyst and a visible light sensitiser. Chem. Commun. 2016, 52, 14200–14203.

[170]

Wakerley, D. W.; Reisner, E. Oxygen-tolerant proton reduction catalysis: Much O2 about nothing? Energy Environ. Sci. 2015, 8, 2283–2295.

[171]

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

[172]

Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 2017, 548, 74–77.

[173]

Schlager, S.; Dibenedetto, A.; Aresta, M.; Apaydin, D. H.; Dumitru, L. M.; Neugebauer, H.; Sariciftci, N. S. Biocatalytic and bioelectrocatalytic approaches for the reduction of carbon dioxide using enzymes. Energy Technol. 2017, 5, 812–821.

[174]

Singh, P.; Srivastava, R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J. CO2 Util. 2021, 53, 101748.

[175]

Rehm, F. B. H.; Chen, S. X.; Rehm, B. H. A. Bioengineering toward direct production of immobilized enzymes: A paradigm shift in biocatalyst design. Bioengineered 2018, 9, 6–11.

[176]

Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

[177]

Woolerton, T. W.; Sheard, S.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. CO2 photoreduction at enzyme-modified metal oxidenanoparticles. Energy Environ. Sci. 2011, 4, 2393–2399.

[178]

Chaudhary, Y. S.; Woolerton, T. W.; Allen, C. S.; Warner, J. H.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem. Commun. 2012, 48, 58–60.

[179]

Arsalan, A.; Younus, H. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles. Int. J. Biol. Macromol. 2018, 118, 1833–1847.

[180]

Hwang, E. T.; Gu, M. B. Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 2013, 13, 49–61.

[181]

Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821.

[182]

Parkinson, B. A.; Weaver, P. F. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 1984, 309, 148–149.

[183]

Kim, J.; Lee, S. H.; Tieves, F.; Choi, D. S.; Hollmann, F.; Paul, C. E.; Park, C. B. Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues. Angew. Chem., Int. Ed. 2018, 57, 13825–13828.

[184]

Miller, M.; Robinson, W. E.; Oliveira, A. R.; Heidary, N.; Kornienko, N.; Warnan, J.; Pereira, I. A. C.; Reisner, E. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 4601–4605.

[185]

Lee, S. Y.; Lim, S. Y.; Seo, D.; Lee, J. Y.; Chung, T. D. Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv. Energy Mater. 2016, 6, 1502207.

[186]

Zhang, L. Y.; Can, M.; Ragsdale, S. W.; Armstrong, F. A. Fast and selective photoreduction of CO2 to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO2, and Ag nanoclusters. ACS Catal. 2018, 8, 2789–2795.

[187]

Yadav, R. K.; Baeg, J. O.; Oh, G. H.; Park, N. J.; Kong, K. J.; Kim, J.; Hwang, D. W.; Biswas, S. K. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J. Am. Chem. Soc. 2012, 134, 11455–11461.

[188]

Fang, X.; Kalathil, S.; Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 2020, 49, 4926–4952.

[189]

Agapakis, C. M.; Boyle, P. M.; Silver, P. A. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat. Chem. Biol. 2012, 8, 527–535.

[190]

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

[191]

Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1, e00103–10.

[192]

Ye, J.; Yu, J.; Zhang, Y. Y.; Chen, M.; Liu, X.; Zhou, S. G.; He, Z. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Appl. Catal. B: Environ. 2019, 257, 117916.

[193]

Kornienko, N.; Sakimoto, K. K.; Herlihy, D. M.; Nguyen, S. C.; Alivisatos, A. P.; Harris, C. B.; Schwartzberg, A.; Yang, P. D. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production. Proc. Natl. Acad. Sci. USA 2016, 113, 11750–11755.

[194]

Zhang, R. T.; He, Y.; Yi, J.; Zhang, L. J.; Shen, C. P.; Liu, S. J.; Liu, L. F.; Liu, B. H.; Qiao, L. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system. Chem 2020, 6, 234–249.

[195]

Gai, P. P.; Yu, W.; Zhao, H.; Qi, R. L.; Li, F.; Liu, L. B.; Lv, F. T.; Wang, S. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid. Angew. Chem., Int. Ed. 2020, 59, 7224–7229.

[196]

Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.

[197]

Wang, B.; Jiang, Z. F.; Yu, J. C.; Wang, J. F.; Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.

[198]

Sakimoto, K. K.; Zhang, S. J.; Yang, P. D. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system. Nano Lett. 2016, 16, 5883–5887.

[199]

Chen, F.; Huang, H. W.; Ye, L. Q.; Zhang, T. R.; Zhang, Y. H.; Han, X. P.; Ma, T. Y. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 2018, 28, 1804284.

[200]

Wang, S. Y.; Teramura, K.; Hisatomi, T.; Domen, K.; Asakura, H.; Hosokawa, S.; Tanaka, T. Highly selective photocatalytic conversion of carbon dioxide by water over Al-SrTiO3 photocatalyst modified with silver-metal dual cocatalysts. ACS Sustainable Chem. Eng. 2021, 9, 9327–9335.

[201]

Mu, L. C.; Zhao, Y.; Li, A. L.; Wang, S. Y.; Wang, Z. L.; Yang, J. X.; Wang, Y.; Liu, T. F.; Chen, R. T.; Zhu, J. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 2016, 9, 2463–2469.

[202]

Wang, Q.; Kalathil, S.; Pornrungroj, C.; Sahm, C. D.; Reisner, E. Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization. Nat. Catal. 2022, 5, 633–641.

[203]

Kuk, S. K.; Singh, R. K.; Nam, D. H.; Singh, R.; Lee, J. K.; Park, C. B. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem., Int. Ed. 2017, 56, 3827–3832.

Nano Research
Pages 10090-10109
Cite this article:
Wang Q, Pan Z. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Research, 2022, 15(12): 10090-10109. https://doi.org/10.1007/s12274-022-4705-8
Topics:
Part of a topical collection:

1710

Views

32

Crossref

26

Web of Science

27

Scopus

1

CSCD

Altmetrics

Received: 15 May 2022
Revised: 24 June 2022
Accepted: 25 June 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return