AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage

Yiguang Zhou1Shuhao Xiao1Jinxia Jiang2( )Rui Wu1Xiaobin Niu1Jun Song Chen1,3,4( )
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
Show Author Information

Graphical Abstract

Nanorods with heterostructure of Li4Ti5O12/rutile TiO2 have been facilely constructed with long cycle life and superior high-rate performance for lithium storage.

Abstract

Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its “zero-strain” characteristic during the charge/discharge. However, the intrinsically low electronic conductivity leads to a deterioration in high-rate performance, impeding its intensive application. Herein, the Li4Ti5O12/rutile TiO2 (LTO/RT) heterostructured nanorods with tunable oxide phases have been in-situ fabricated by annealing the electrospun nanofiber precursor. By constructing such a heterostructured interface, the as-prepared sample delivers a high capacity of 160.3 mAh·g–1 at 1 C after 200 cycles, 125.5 mAh·g–1 at 10 C after 500 cycles and a superior capacity retention of 90.3% after 1,000 cycles at 30 C, outperforming the heterostructure-free counterparts of pure LTO, RT and the commercial LTO product. Density Functional Theory calculation suggests a possible synergistic effect of the LTO/RT interface that would improve the electronic conductivity and Li-ion diffusion.

Electronic Supplementary Material

Download File(s)
12274_2022_4706_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Fan, M.; Chang, X.; Meng, Q. H.; Wan, L. J.; Guo, Y. G. Progress in the sustainable recycling of spent lithium-ion batteries. SusMat 2021, 1, 241–254.

[2]

Jo, M. R.; Jung, Y. S.; Kang, Y. M. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale 2012, 4, 6870–6875.

[3]

Sha, Y. J.; Xu, X. M.; Li, L.; Cai, R.; Shao, Z. P. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. J. Power Sources 2016, 314, 18–27.

[4]
An, Q. ; Sun, X. H. ; Na, Y. ; Cai, S. M. ; Zheng, C. M. Graphene-supported cobalt nanoparticles used to activate SiO2-based anode for lithium-ion batteries. Chin. Chem. Lett. , in press, DOI: 10.1016/j.cclet.2022.03.028.
[5]
Zhang, W. F. ; Wang, L. ; Ding, G. C. ; Yang, Y. J. ; Yang, G. ; Xu, J. ; Xu, N. N. ; Xie, L. L. ; Han, Q. ; Zhu, L. M. et al. Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity. Chin. Chem. Lett. , in press,DOI: 10.1016/j.cclet.2022.03.051.
[6]

Liu, C.; Xia, H. Y.; Wei, Y. P.; Ma, J. B.; Gan, L.; Kang, F. Y.; He, Y. B. Grain boundaries contribute to highly efficient lithium-ion transport in advanced LiNi0.8Co0.15Al0.05O2 secondary sphere with compact structure. SusMat 2021, 1, 255–265.

[7]

Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.

[8]

Ge, H.; Chen, L.; Yuan, W.; Zhang, Y.; Fan, Q. Z.; Osgood, H.; Matera, D.; Song, X. M.; Wu, G. Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources 2015, 297, 436–441.

[9]

He, Y. S.; Muhetaer, A.; Li, J. M.; Wang, F. F.; Liu, C.; Li, Q.; Xu, D. S. Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv. Energy Mater. 2017, 7, 1700950.

[10]

Gong, S. H.; Lee, J. H.; Chun, D. W.; Bae, J. H.; Kim, S. C.; Yu, S.; Nahm, S.; Kim, H. S. Effects of cr doping on structural and electrochemical properties of Li4Ti5O12 nanostructure for sodium-ion battery anode. J. Energy Chem. 2021, 59, 465–472.

[11]

Liu, J.; Wei, A. X.; Pan, G. X.; Shen, S. H.; Xiao, Z. M.; Zhao, Y.; Xia, X. H. Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J. Energy Chem. 2021, 54, 754–760.

[12]

Wang, G. C.; Wang, H. M.; Ma, G. Q.; Du, X. H.; Du, L. Y.; Jing, P.; Wang, Y. Q.; Wu, K. P.; Wu, H.; Wang, Q. et al. Investigation on process mechanism of a novel energy-saving synthesis for high performance Li4Ti5O12 anode material. J. Energy Chem. 2022, 70, 266–275.

[13]

Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.

[14]

Xu, N. S.; Sun, X. Z.; Zhang, X.; Wang, K.; Ma, Y. W. A two-step method for preparing Li4Ti5O12-graphene as an anode material for lithium-ion hybrid capacitors. RSC Adv. 2015, 5, 94361–94368.

[15]

Xu, N. S.; Sun, X. Z.; Zhao, F. F.; Jin, X. F.; Zhang, X.; Wang, K.; Huang, K.; Ma, Y. W. The role of pre-lithiation in activated carbon/Li4Ti5O12 asymmetric capacitors. Electrochim. Acta 2017, 236, 443–450.

[16]
Chang, X. Q. ; Sun, N. ; Zhou, H. Y. ; Soomro, R. A. ; Xu, B. Soft carbon-coated bulk graphite for improved potassium ion storage. Chin. Chem. Lett. , in press,DOI: 10.1016/j.cclet.2022.03.035.
[17]

Wang, W.; Guo, Y. Y.; Liu, L. X.; Wang, S. X.; Yang, X. J.; Guo, H. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. J. Power Sources 2014, 245, 624–629.

[18]

Liu, Y.; Liu, J. Y.; Hou, M. Y.; Fan, L.; Wang, Y. G.; Xia, Y. Y. Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 2017, 5, 10902–10908.

[19]

Jiang, Y. Q.; Guo, F.; Liu, Y. J.; Xu, Z.; Gao, C. Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 2021, 1, 304–323.

[20]

Wu, H.; Hou, C. Y.; Shen, G. Z.; Liu, T.; Shao, Y. L.; Xiao, R.; Wang, H. Z. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Res. 2018, 11, 5866–5878.

[21]

Wang, H. Y.; Wang, L. C.; Lin, J.; Yang, J. B.; Wu, F.; Li, L.; Chen, R. J. Structural and electrochemical characteristics of hierarchical Li4Ti5O12 as high-rate anode material for lithium-ion batteries. Electrochim. Acta 2021, 368, 137470.

[22]

Zhu, K. X.; Gao, H. Y.; Hu, G. X.; Liu, M. J.; Wang, H. C. Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 2017, 340, 263–272.

[23]

Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.

[24]

Sun, J.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Xue, H.; Wang, Q. Revealing the interfacial electron modulation effect of CoFe alloys with CoCx encapsulated in N-doped cnts for superior oxygen reduction. Adv. Powder Mater. 2022, 1, 100023.

[25]

Chen, G.; Yan, L. T.; Luo, H. M.; Guo, S. J. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 2016, 28, 7580–7602.

[26]

Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Wang, M.; Ye, Y. S.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv. Sci. 2018, 5, 1800613.

[27]

Zhao, N.; Qin, J.; Chu, L. J.; Wang, L. Z.; Xu, D.; Wang, X. J.; Yang, H. J.; Zhang, J. J.; Li, X. F. Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 2020, 78, 105345.

[28]

Liu, J. W.; Xiao, S. H.; Li, X. Y.; Li, Z. Z.; Li, X. R.; Zhang, W. S.; Xiang, Y.; Niu, X. B.; Chen, J. S. Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 2021, 417, 129279.

[29]

Wu, X. Y.; Li, S. M.; Xu, Y. Y.; Wang, B.; Liu, J. H.; Yu, M. Hierarchical heterostructures of NiO nanosheet arrays grown on pine twig-like β-NiS@Ni3S2 frameworks as free-standing integrated anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 245–254.

[30]

Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.

[31]

Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.

[32]

Guo, C.; Zhang, W. C.; Liu, Y.; He, J. P.; Yang, S.; Liu, M. K.; Wang, Q. H.; Guo, Z. P. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high‐performance sodium‐ion batteries. Adv. Funct. Mater. 2019, 29, 1901925.

[33]

Hu, X. S.; Li, Y.; Wei, X. X.; Wang, L.; She, H. D.; Huang, J. W.; Wang, Q. Z. Preparation of double-layered Co-Ci/NiFeOOH co-catalyst for highly meliorated pec performance in water splitting. Adv. Powder Mater. 2022, 1, 100024.

[34]

Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.

[35]

Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.

[36]

Jiang, M.; Fu, C. P.; Cheng, R. Q.; Liu, T. Y.; Guo, M. L.; Meng, P. Y.; Zhang, J.; Sun, B. D. Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chem. Eng. J. 2021, 404, 127124.

[37]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[38]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Wu, F. X.; Li, X. H.; Wang, Z. X.; Guo, H. J. Petal-like Li4Ti5O12-TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale 2013, 5, 6936–6943.

[41]

Wang, D. D.; Liu, H. X.; Shan, Z. Q.; Xia, D. W.; Na, R.; Liu, H. D.; Wang, B. H.; Tian, J. H. Nitrogen, sulfur co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 2020, 27, 387–395.

[42]

Wang, Q.; Geng, J.; Yuan, C.; Kuai, L.; Geng, B. Y. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 41–46.

[43]

Wang, R.; Cao, X. Y.; Zhao, D. X.; Zhu, L. M.; Xie, L. L.; Li, J. J.; Miao, Y. X. Enhancing lithium storage performances of the Li4Ti5O12 anode by introducing the CuV2O6 phase. ACS Appl. Mater. Interfaces 2020, 12, 39170–39180.

[44]

Zhang, L.; Zhang, X. H.; Tian, G. Y.; Zhang, Q. H.; Knapp, M.; Ehrenberg, H.; Chen, G.; Shen, Z. X.; Yang, G. C.; Gu, L. et al. Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nat. Commun. 2020, 11, 3490.

[45]

He, D. F.; Yang, Y.; Liu, Z. M.; Shao, J.; Wu, J.; Wang, S.; Shen, L. M.; Bao, N. Z. Solvothermal-assisted assembly of MoS2 nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery. Nano Res. 2020, 13, 1029–1034.

[46]

Luo, S. N.; Zhang, P. C.; Yuan, T.; Ruan, J. F.; Peng, C. X.; Pang, Y. P.; Sun, H.; Yang, J. H.; Zheng, S. Y. Molecular self-assembly of a nanorod n-Li4Ti5O12/TiO2/C anode for superior lithium ion storage. J. Mater. Chem. A 2018, 6, 15755–15761.

[47]

Zhu, J. F.; Chen, J.; Xu, H.; Sun, S. Q.; Xu, Y.; Zhou, M.; Gao, X.; Sun, Z. M. Plasma-introduced oxygen defects confined in Li4Ti5O12 nanosheets for boosting lithium-ion diffusion. ACS Appl. Mater. Interfaces 2019, 11, 17384–17392.

[48]

Ma, J. M.; Wei, Y. P.; Gan, L.; Wang, C.; Xia, H. Y.; Lv, W.; Li, J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. J. Mater. Chem. A 2019, 7, 1168–1176.

[49]

Lu, Y. F.; Zhang, H. J.; Liu, H. D.; Nie, Z. T.; Xu, F.; Zhao, Y.; Zhu, J. X.; Huang, W. Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 2021, 21, 9651–9660.

[50]

Ge, H.; Cui, L. X.; Sun, Z. J.; Wang, D. H.; Nie, S. N.; Zhu, S.; Matthews, B.; Wu, G.; Song, X. M.; Ma, T. Y. Unique Li4Ti5O12/TiO2 multilayer arrays with advanced surface lithium storage capability. J. Mater. Chem. A 2018, 6, 22053–22061.

[51]

McNulty, D.; Carroll, E.; O'Dwyer, C. Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability, and high structural stability. Adv. Energy Mater. 2017, 7, 1602291.

[52]

Wu, L. B.; Leng, X. N.; Liu, Y.; Wei, S. F.; Li, C. L.; Wang, G. Y.; Lian, J. S.; Jiang, Q.; Nie, A. N.; Zhang, T. Y. A strategy for synthesis of nanosheets consisting of alternating spinel Li4Ti5O12 and rutile TiO2 lamellas for high-rate anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4649–4657.

[53]

Ling, L. M.; Bai, Y.; Wang, H. L.; Ni, Q.; Zhang, J. T.; Wu, F.; Wu, C. Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Res. 2018, 11, 1563–1574.

[54]

Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

[55]

Zhang, H. J.; Lu, Y. F.; Han, W. Q.; Zhu, J. X.; Zhang, Y.; Huang, W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem. Eng. J. 2020, 393, 124766.

[56]

Chen, C. J.; Xu, H. H.; Zhou, T. F.; Guo, Z. P.; Chen, L. N.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Cheng, S. J.; Huang, Y. H. et al. Integrated intercalation-based and interfacial sodium storage in graphene-wrapped porous Li4Ti5O12 nanofibers composite aerogel. Adv. Energy Mater. 2016, 6, 1600322.

[57]

Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294–301.

[58]

Li, X. R.; Wei, J. L.; Li, Q.; Zheng, S. S.; Xu, Y. X.; Du, P.; Chen, C. Y.; Zhao, J. Y.; Xue, H. G.; Xu, Q. et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv. Funct. Mater. 2018, 28, 1800886.

[59]

Zhang, Y. X.; Luo, Y.; Chen, Y.; Lu, T. L.; Yan, L. Q.; Cui, X. L.; Xie, J. Y. Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 2017, 9, 17145–17154.

[60]

Xu, F.; Zhou, Y. P.; Zhai, X. W.; Zhang, H. J.; Liu, H. D.; Ang, E. H.; Lu, Y. F.; Nie, Z. T.; Zhou, M.; Zhu, J. X. Ultrafast universal fabrication of metal-organic complex nanosheets by Joule heating engineering. Small Methods 2022, 6, 2101212.

[61]

Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y. Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.

[62]

Ding, Y.; Zhang, Q.; Rui, K.; Xu, F.; Lin, H. J.; Yan, Y.; Li, H.; Zhu, J. X.; Huang, W. Ultrafast microwave activating polarized electron for scalable porous al toward high-energy-density batteries. Nano Lett. 2020, 20, 8818–8824.

[63]

Kim, M. C.; Moon, S. H.; Han, S. B.; Kwak, D. H.; Lee, J. E.; Kim, E. S.; Choi, S.; Shin, Y. K.; Park, K. W. Sea urchin-like Li4Ti5O12 nanostructure as a Li-ion battery anode with high energy density and improved ionic transport. J. Alloys Compd. 2018, 767, 73–80.

[64]

Yan, B.; Li, M. S.; Li, X. F.; Bai, Z. M.; Yang, J. W.; Xiong, D. B.; Li, D. J. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode. J. Mater. Chem. A 2015, 3, 11773–11781.

Nano Research
Pages 1513-1521
Cite this article:
Zhou Y, Xiao S, Jiang J, et al. In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage. Nano Research, 2023, 16(1): 1513-1521. https://doi.org/10.1007/s12274-022-4706-7
Topics:

894

Views

16

Crossref

15

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 15 May 2022
Revised: 05 June 2022
Accepted: 26 June 2022
Published: 08 July 2022
© Tsinghua University Press 2022
Return