Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its “zero-strain” characteristic during the charge/discharge. However, the intrinsically low electronic conductivity leads to a deterioration in high-rate performance, impeding its intensive application. Herein, the Li4Ti5O12/rutile TiO2 (LTO/RT) heterostructured nanorods with tunable oxide phases have been in-situ fabricated by annealing the electrospun nanofiber precursor. By constructing such a heterostructured interface, the as-prepared sample delivers a high capacity of 160.3 mAh·g–1 at 1 C after 200 cycles, 125.5 mAh·g–1 at 10 C after 500 cycles and a superior capacity retention of 90.3% after 1,000 cycles at 30 C, outperforming the heterostructure-free counterparts of pure LTO, RT and the commercial LTO product. Density Functional Theory calculation suggests a possible synergistic effect of the LTO/RT interface that would improve the electronic conductivity and Li-ion diffusion.
Fan, M.; Chang, X.; Meng, Q. H.; Wan, L. J.; Guo, Y. G. Progress in the sustainable recycling of spent lithium-ion batteries. SusMat 2021, 1, 241–254.
Jo, M. R.; Jung, Y. S.; Kang, Y. M. Tailored Li4Ti5O12 nanofibers with outstanding kinetics for lithium rechargeable batteries. Nanoscale 2012, 4, 6870–6875.
Sha, Y. J.; Xu, X. M.; Li, L.; Cai, R.; Shao, Z. P. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. J. Power Sources 2016, 314, 18–27.
Liu, C.; Xia, H. Y.; Wei, Y. P.; Ma, J. B.; Gan, L.; Kang, F. Y.; He, Y. B. Grain boundaries contribute to highly efficient lithium-ion transport in advanced LiNi0.8Co0.15Al0.05O2 secondary sphere with compact structure. SusMat 2021, 1, 255–265.
Mao, E. Y.; Wang, W. Y.; Wan, M. T.; Wang, L.; He, X. M.; Sun, Y. M. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Res. 2020, 13, 1122–1126.
Ge, H.; Chen, L.; Yuan, W.; Zhang, Y.; Fan, Q. Z.; Osgood, H.; Matera, D.; Song, X. M.; Wu, G. Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources 2015, 297, 436–441.
He, Y. S.; Muhetaer, A.; Li, J. M.; Wang, F. F.; Liu, C.; Li, Q.; Xu, D. S. Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv. Energy Mater. 2017, 7, 1700950.
Gong, S. H.; Lee, J. H.; Chun, D. W.; Bae, J. H.; Kim, S. C.; Yu, S.; Nahm, S.; Kim, H. S. Effects of cr doping on structural and electrochemical properties of Li4Ti5O12 nanostructure for sodium-ion battery anode. J. Energy Chem. 2021, 59, 465–472.
Liu, J.; Wei, A. X.; Pan, G. X.; Shen, S. H.; Xiao, Z. M.; Zhao, Y.; Xia, X. H. Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. J. Energy Chem. 2021, 54, 754–760.
Wang, G. C.; Wang, H. M.; Ma, G. Q.; Du, X. H.; Du, L. Y.; Jing, P.; Wang, Y. Q.; Wu, K. P.; Wu, H.; Wang, Q. et al. Investigation on process mechanism of a novel energy-saving synthesis for high performance Li4Ti5O12 anode material. J. Energy Chem. 2022, 70, 266–275.
Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.
Xu, N. S.; Sun, X. Z.; Zhang, X.; Wang, K.; Ma, Y. W. A two-step method for preparing Li4Ti5O12-graphene as an anode material for lithium-ion hybrid capacitors. RSC Adv. 2015, 5, 94361–94368.
Xu, N. S.; Sun, X. Z.; Zhao, F. F.; Jin, X. F.; Zhang, X.; Wang, K.; Huang, K.; Ma, Y. W. The role of pre-lithiation in activated carbon/Li4Ti5O12 asymmetric capacitors. Electrochim. Acta 2017, 236, 443–450.
Wang, W.; Guo, Y. Y.; Liu, L. X.; Wang, S. X.; Yang, X. J.; Guo, H. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. J. Power Sources 2014, 245, 624–629.
Liu, Y.; Liu, J. Y.; Hou, M. Y.; Fan, L.; Wang, Y. G.; Xia, Y. Y. Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 2017, 5, 10902–10908.
Jiang, Y. Q.; Guo, F.; Liu, Y. J.; Xu, Z.; Gao, C. Three-dimensional printing of graphene-based materials for energy storage and conversion. SusMat 2021, 1, 304–323.
Wu, H.; Hou, C. Y.; Shen, G. Z.; Liu, T.; Shao, Y. L.; Xiao, R.; Wang, H. Z. MoS2/C/C nanofiber with double-layer carbon coating for high cycling stability and rate capability in lithium-ion batteries. Nano Res. 2018, 11, 5866–5878.
Wang, H. Y.; Wang, L. C.; Lin, J.; Yang, J. B.; Wu, F.; Li, L.; Chen, R. J. Structural and electrochemical characteristics of hierarchical Li4Ti5O12 as high-rate anode material for lithium-ion batteries. Electrochim. Acta 2021, 368, 137470.
Zhu, K. X.; Gao, H. Y.; Hu, G. X.; Liu, M. J.; Wang, H. C. Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries. J. Power Sources 2017, 340, 263–272.
Tian, M.; Chen, X.; Sun, S. T.; Yang, D.; Wu, P. Y. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery. Nano Res. 2019, 12, 1121–1127.
Sun, J.; Guo, N. K.; Song, T. S.; Hao, Y. R.; Sun, J. W.; Xue, H.; Wang, Q. Revealing the interfacial electron modulation effect of CoFe alloys with CoCx encapsulated in N-doped cnts for superior oxygen reduction. Adv. Powder Mater. 2022, 1, 100023.
Chen, G.; Yan, L. T.; Luo, H. M.; Guo, S. J. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 2016, 28, 7580–7602.
Huang, Y. X.; Wang, Z. H.; Jiang, Y.; Li, S. J.; Wang, M.; Ye, Y. S.; Wu, F.; Xie, M.; Li, L.; Chen, R. J. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv. Sci. 2018, 5, 1800613.
Zhao, N.; Qin, J.; Chu, L. J.; Wang, L. Z.; Xu, D.; Wang, X. J.; Yang, H. J.; Zhang, J. J.; Li, X. F. Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 2020, 78, 105345.
Liu, J. W.; Xiao, S. H.; Li, X. Y.; Li, Z. Z.; Li, X. R.; Zhang, W. S.; Xiang, Y.; Niu, X. B.; Chen, J. S. Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chem. Eng. J. 2021, 417, 129279.
Wu, X. Y.; Li, S. M.; Xu, Y. Y.; Wang, B.; Liu, J. H.; Yu, M. Hierarchical heterostructures of NiO nanosheet arrays grown on pine twig-like β-NiS@Ni3S2 frameworks as free-standing integrated anode for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 356, 245–254.
Xiao, S. H.; Li, X. Y.; Zhang, W. S.; Xiang, Y.; Li, T. S.; Niu, X. B.; Chen, J. S.; Yan, Q. Y. Bilateral interfaces in In2Se3-CoIn2-CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano 2021, 15, 13307–13318.
Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.
Guo, C.; Zhang, W. C.; Liu, Y.; He, J. P.; Yang, S.; Liu, M. K.; Wang, Q. H.; Guo, Z. P. Constructing CoO/Co3S4 heterostructures embedded in N-doped carbon frameworks for high‐performance sodium‐ion batteries. Adv. Funct. Mater. 2019, 29, 1901925.
Hu, X. S.; Li, Y.; Wei, X. X.; Wang, L.; She, H. D.; Huang, J. W.; Wang, Q. Z. Preparation of double-layered Co-Ci/NiFeOOH co-catalyst for highly meliorated pec performance in water splitting. Adv. Powder Mater. 2022, 1, 100024.
Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.
Cao, L.; Gao, X. W.; Zhang, B.; Ou, X.; Zhang, J. F.; Luo, W. B. Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano 2020, 14, 3610–3620.
Jiang, M.; Fu, C. P.; Cheng, R. Q.; Liu, T. Y.; Guo, M. L.; Meng, P. Y.; Zhang, J.; Sun, B. D. Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chem. Eng. J. 2021, 404, 127124.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Wu, F. X.; Li, X. H.; Wang, Z. X.; Guo, H. J. Petal-like Li4Ti5O12-TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale 2013, 5, 6936–6943.
Wang, D. D.; Liu, H. X.; Shan, Z. Q.; Xia, D. W.; Na, R.; Liu, H. D.; Wang, B. H.; Tian, J. H. Nitrogen, sulfur co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Mater. 2020, 27, 387–395.
Wang, Q.; Geng, J.; Yuan, C.; Kuai, L.; Geng, B. Y. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 41–46.
Wang, R.; Cao, X. Y.; Zhao, D. X.; Zhu, L. M.; Xie, L. L.; Li, J. J.; Miao, Y. X. Enhancing lithium storage performances of the Li4Ti5O12 anode by introducing the CuV2O6 phase. ACS Appl. Mater. Interfaces 2020, 12, 39170–39180.
Zhang, L.; Zhang, X. H.; Tian, G. Y.; Zhang, Q. H.; Knapp, M.; Ehrenberg, H.; Chen, G.; Shen, Z. X.; Yang, G. C.; Gu, L. et al. Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nat. Commun. 2020, 11, 3490.
He, D. F.; Yang, Y.; Liu, Z. M.; Shao, J.; Wu, J.; Wang, S.; Shen, L. M.; Bao, N. Z. Solvothermal-assisted assembly of MoS2 nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery. Nano Res. 2020, 13, 1029–1034.
Luo, S. N.; Zhang, P. C.; Yuan, T.; Ruan, J. F.; Peng, C. X.; Pang, Y. P.; Sun, H.; Yang, J. H.; Zheng, S. Y. Molecular self-assembly of a nanorod n-Li4Ti5O12/TiO2/C anode for superior lithium ion storage. J. Mater. Chem. A 2018, 6, 15755–15761.
Zhu, J. F.; Chen, J.; Xu, H.; Sun, S. Q.; Xu, Y.; Zhou, M.; Gao, X.; Sun, Z. M. Plasma-introduced oxygen defects confined in Li4Ti5O12 nanosheets for boosting lithium-ion diffusion. ACS Appl. Mater. Interfaces 2019, 11, 17384–17392.
Ma, J. M.; Wei, Y. P.; Gan, L.; Wang, C.; Xia, H. Y.; Lv, W.; Li, J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. J. Mater. Chem. A 2019, 7, 1168–1176.
Lu, Y. F.; Zhang, H. J.; Liu, H. D.; Nie, Z. T.; Xu, F.; Zhao, Y.; Zhu, J. X.; Huang, W. Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 2021, 21, 9651–9660.
Ge, H.; Cui, L. X.; Sun, Z. J.; Wang, D. H.; Nie, S. N.; Zhu, S.; Matthews, B.; Wu, G.; Song, X. M.; Ma, T. Y. Unique Li4Ti5O12/TiO2 multilayer arrays with advanced surface lithium storage capability. J. Mater. Chem. A 2018, 6, 22053–22061.
McNulty, D.; Carroll, E.; O'Dwyer, C. Rutile TiO2 inverse opal anodes for Li-ion batteries with long cycle life, high-rate capability, and high structural stability. Adv. Energy Mater. 2017, 7, 1602291.
Wu, L. B.; Leng, X. N.; Liu, Y.; Wei, S. F.; Li, C. L.; Wang, G. Y.; Lian, J. S.; Jiang, Q.; Nie, A. N.; Zhang, T. Y. A strategy for synthesis of nanosheets consisting of alternating spinel Li4Ti5O12 and rutile TiO2 lamellas for high-rate anodes of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4649–4657.
Ling, L. M.; Bai, Y.; Wang, H. L.; Ni, Q.; Zhang, J. T.; Wu, F.; Wu, C. Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries. Nano Res. 2018, 11, 1563–1574.
Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.
Zhang, H. J.; Lu, Y. F.; Han, W. Q.; Zhu, J. X.; Zhang, Y.; Huang, W. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chem. Eng. J. 2020, 393, 124766.
Chen, C. J.; Xu, H. H.; Zhou, T. F.; Guo, Z. P.; Chen, L. N.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Cheng, S. J.; Huang, Y. H. et al. Integrated intercalation-based and interfacial sodium storage in graphene-wrapped porous Li4Ti5O12 nanofibers composite aerogel. Adv. Energy Mater. 2016, 6, 1600322.
Wang, S. T.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z. T.; Tang, Z. L.; Li, J. Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: Capacity and conductivity enhancement by phase boundaries. Nano Energy 2017, 32, 294–301.
Li, X. R.; Wei, J. L.; Li, Q.; Zheng, S. S.; Xu, Y. X.; Du, P.; Chen, C. Y.; Zhao, J. Y.; Xue, H. G.; Xu, Q. et al. Nitrogen-doped cobalt oxide nanostructures derived from cobalt-alanine complexes for high-performance oxygen evolution reactions. Adv. Funct. Mater. 2018, 28, 1800886.
Zhang, Y. X.; Luo, Y.; Chen, Y.; Lu, T. L.; Yan, L. Q.; Cui, X. L.; Xie, J. Y. Enhanced rate capability and low-temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces 2017, 9, 17145–17154.
Xu, F.; Zhou, Y. P.; Zhai, X. W.; Zhang, H. J.; Liu, H. D.; Ang, E. H.; Lu, Y. F.; Nie, Z. T.; Zhou, M.; Zhu, J. X. Ultrafast universal fabrication of metal-organic complex nanosheets by Joule heating engineering. Small Methods 2022, 6, 2101212.
Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y. Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.
Ding, Y.; Zhang, Q.; Rui, K.; Xu, F.; Lin, H. J.; Yan, Y.; Li, H.; Zhu, J. X.; Huang, W. Ultrafast microwave activating polarized electron for scalable porous al toward high-energy-density batteries. Nano Lett. 2020, 20, 8818–8824.
Kim, M. C.; Moon, S. H.; Han, S. B.; Kwak, D. H.; Lee, J. E.; Kim, E. S.; Choi, S.; Shin, Y. K.; Park, K. W. Sea urchin-like Li4Ti5O12 nanostructure as a Li-ion battery anode with high energy density and improved ionic transport. J. Alloys Compd. 2018, 767, 73–80.
Yan, B.; Li, M. S.; Li, X. F.; Bai, Z. M.; Yang, J. W.; Xiong, D. B.; Li, D. J. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode. J. Mater. Chem. A 2015, 3, 11773–11781.