AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries

Ping Wang1,2Yu-Jie Guo3Wan-Ping Chen3Hui Duan3Huan Ye2Hu-Rong Yao4Ya-Xia Yin3( )Fei-Fei Cao2( )
Institute of Advanced Materials, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
College of Science, Huazhong Agricultural University, Wuhan 430070, China
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
Show Author Information

Graphical Abstract

A bioselective synthesis strategy is proposed to enable hard carbon from basswood with an improved graphitization degree and a low tortuosity, which endows good rate capability and cycling stability as well as high initial Coulombic efficiency as self-supported anode for sodium-ion batteries. In particular, the hard carbon anode from fungus-pretreated basswood delivers a large slope capacity and maintains well even at high current density.

Abstract

Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries (SIBs) because of its low operating potential, high capacity, resource availability, and low cost. However, scientific and technological challenges still exist to prepare hard carbon with a high initial Coulombic efficiency (ICE), an excellent rate capability, and good cycling stability. In this work, we report a self-supported hard carbon electrode from fungus-pretreated basswood with an improved graphitization degree and a low tortuosity. Compared with the hard carbon derived from basswood, the hard carbon electrode from fungus-pretreated basswood has an improved rate capability of 242.3 mAh·g−1 at 200 mA·g−1and cycling stability with 93.9% of its capacity retention after 200 cycles at 40 mA·g−1, as well as the increased ICE from 84.3% to 88.2%. Additionally, ex-situ X-ray diffraction indicates that Na+ adsorption caused the sloping capacity, whereas Na+ intercalation between interlayer spacing corresponded to the low potential plateau capacity. This work provides a new perspective for the preparation of high-performance hard carbon and gains the in-depth understanding of Na storage mechanism.

Electronic Supplementary Material

Download File(s)
12274_2022_4708_MOESM1_ESM.pdf (2 MB)

References

[1]

Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.

[2]

He, H. N.; Sun, D.; Tang, Y. E.; Wang, H. Y.; Shao, M. H. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251.

[3]

Zhang, Z. Z.; Du, Y. C.; Wang, Q. C.; Xu, J. Y.; Zhou, Y. N.; Bao, J. C.; Shen, J.; Zhou, X. S. A yolk–shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 17504–17510.

[4]

Cheng, Z. W.; Fan, X. Y.; Yu, L. Z.; Hua, W. B.; Guo, Y. J.; Feng, Y. H.; Ji, F. D.; Liu, M. T.; Yin, Y. X.; Han, X. G. et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202117728.

[5]

Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.

[6]

Li, L.; Zhang, D.; Deng, J. P.; Gou, Y. C.; Fang, J. F.; Cui, H.; Zhao, Y. Q.; Cao, M. H. Carbon-based materials for fast charging lithium-ion batteries. Carbon 2021, 183, 721–734.

[7]

Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

[8]

Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Hu, Y. S.; Wan, L. J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 2018, 8, 1800855.

[9]

Qian, J.; Wu, F.; Ye, Y. S.; Zhang, M. L.; Huang, Y. X.; Xing, Y.; Qu, W.; Li, L.; Chen, R. J. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv. Energy Mater. 2018, 8, 1703159.

[10]

Wang, M. Y.; Zhao, X. X.; Guo, J. Z.; Nie, X. J.; Gu, Z. Y.; Yang, X.; Wu, X. L. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3−x(P2O7)x cathode material. Green Energy Environ. 2022, 7, 763–771.

[11]

Cheng, Z. W.; Zhao, B.; Guo, Y. J.; Yu, L. Z.; Yuan, B. H.; Hua, W. B.; Yin, Y. X.; Xu, S. L.; Xiao, B.; Han, X. G. et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103461.

[12]

Gu, Z. Y.; Guo, J. Z.; Cao, J. M.; Wang, X. T.; Zhao, X. X.; Zheng, X. Y.; Li, W. H.; Sun, Z. H.; Liang, H. J.; Wu, X. L. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 2022, 34, 2110108.

[13]

Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.

[14]

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

[15]

Xie, F.; Xu, Z.; Guo, Z. Y.; Lu, Y. X.; Chen, L. Q.; Titirici, M. M.; Hu, Y. S. Disordered carbon anodes for Na-ion batteries—quo vadis? Sci. China Chem. 2021, 64, 1679–1692.

[16]

Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Prog. Energy Combust. Sci. 2021, 87, 100929.

[17]

Xu, Z. H.; Du, S. L.; Yi, Z. Y.; Han, J. C.; Lai, C. L.; Xu, Y. F.; Zhou, X. S. Water chestnut-derived slope-dominated carbon as a high-performance anode for high-safety potassium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 11410–11417.

[18]

Marino, C.; Cabanero, J.; Povia, M.; Villevieille, C. Biowaste lignin-based carbonaceous materials as anodes for Na-ion batteries. J. Electrochem. Soc. 2018, 165, A1400–A1408.

[19]

Feng, Y. M.; Tao, L.; Zheng, Z. F.; Huang, H. B.; Lin, F. Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. Energy Storage Mater. 2020, 31, 274–309.

[20]

Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508.

[21]

Wang, P.; Zhang, G.; Wei, X. Y.; Liu, R.; Gu, J. J.; Cao, F. F. Bioselective synthesis of a porous carbon collector for high-performance sodium-metal anodes. J. Am. Chem. Soc. 2021, 143, 3280–3283.

[22]

Zhu, H. L.; Shen, F.; Luo, W.; Zhu, S. Z.; Zhao, M. H.; Natarajan, B.; Dai, J. Q.; Zhou, L. H.; Ji, X. L.; Yassar, R. S. et al. Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 2017, 33, 37–44.

[23]

Feng, Y. M.; Tao, L.; He, Y. H.; Jin, Q.; Kuai, C. G.; Zheng, Y. W.; Li, M. Q.; Hou, Q. P.; Zheng, Z. F.; Lin, F. et al. Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. J. Mater. Chem. A 2019, 7, 26954–26965.

[24]

Alvin, S.; Chandra, C.; Kim, J. Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chem. Eng. J. 2021, 411, 128490.

[25]

Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Xu, X.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S.; Yu, G. H. Low-tortuosity thick electrodes with active materials gradient design for enhanced energy storage. ACS Nano 2022, 16, 4805–4812.

[26]

Zhao, Z. D.; Sun, M. Q.; Chen, W. J.; Liu, Y.; Zhang, L.; Dongfang, N. C.; Ruan, Y. B.; Zhang, J. J.; Wang, P.; Dong, L. et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 2019, 29, 1809196.

[27]

Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600377.

[28]

Song, H. Y.; Xu, S. M.; Li, Y. J.; Dai, J. Q.; Gong, A.; Zhu, M. W.; Zhu, C. L.; Chen, C. J.; Chen, Y. N.; Yao, Y. G. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203.

[29]

Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.

[30]

Wang, P.; Ye, H.; Yin, Y. X.; Chen, H.; Bian, Y. B.; Wang, Z. R.; Cao, F. F.; Guo, Y. G. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv. Mater. 2019, 31, 1805134.

[31]

Cheng, J.; Gu, J. J.; Tao, W.; Wang, P.; Liu, L.; Wang, C. Y.; Li, Y. K.; Feng, X. H.; Qiu, G. H.; Cao, F. F. Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water. Bioresour. Technol. 2019, 294, 122149.

[32]

Wang, P. F.; Yao, H. R.; Liu, X. Y.; Yin, Y. X.; Zhang, J. N.; Wen, Y.; Yu, X. Q.; Gu, L.; Guo, Y. G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 2018, 4, eaar6018.

[33]

Sun, N.; Guan, Z.; Liu, Y. W.; Cao, Y. L.; Zhu, Q. Z.; Liu, H.; Wang, Z. X.; Zhang, P.; Xu, B. Extended “adsorption–insertion” model: A new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 2019, 9, 1901351.

[34]

Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Wang, X. T.; Zhao, X. X.; Li, W. H.; Yu, H. Y.; Wu, X. L. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 2021, 15, 925–932.

[35]

Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.

[36]

Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

[37]

Wang, P.; Zhang, G.; Li, M. Y.; Yin, Y. X.; Li, J. Y.; Li, G.; Wang, W. P.; Peng, W.; Cao, F. F.; Guo, Y. G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020.

[38]

Beda, A.; Rabuel, F.; Morcrette, M.; Knopf, S.; Taberna, P. L.; Simon, P.; Ghimbeu, C. M. Hard carbon key properties allow for the achievement of high coulombic efficiency and high volumetric capacity in Na-ion batteries. J. Mater. Chem. A 2021, 9, 1743–1758.

[39]

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

[40]

Zhang, J.; Wang, D. W.; Lv, W.; Qin, L.; Niu, S. Z.; Zhang, S. W.; Cao, T. F.; Kang, F. Y.; Yang, Q. H. Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges. Adv. Energy Mater. 2018, 8, 1801361.

[41]

Jache, M. S. B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.

[42]

Xie, F.; Xu, Z.; Jensen, A. C. S.; Au, H.; Lu, Y. X.; Araullo-Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.

[43]

Zhang, N.; Liu, Q.; Chen, W. L.; Wan, M.; Li, X. C.; Wang, L. L.; Xue, L. H.; Zhang, W. X. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J. Power Sources 2018, 378, 331–337.

[44]

Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Li, W. H.; Xi, X. T.; Yang, X.; Liang, H. J.; Feng, X.; Wu, X. L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 2019, 31, 1903125.

[45]

Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

[46]

Wang, Q. Q.; Zhu, X. S.; Liu, Y. H.; Fang, Y. Y.; Zhou, X. S.; Bao, J. C. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 2018, 127, 658–666.

Nano Research
Pages 3832-3838
Cite this article:
Wang P, Guo Y-J, Chen W-P, et al. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Research, 2023, 16(3): 3832-3838. https://doi.org/10.1007/s12274-022-4708-5
Topics:
Part of a topical collection:

1225

Views

19

Crossref

19

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 20 May 2022
Revised: 08 June 2022
Accepted: 25 June 2022
Published: 14 July 2022
© Tsinghua University Press 2022
Return