Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hard carbon derived from biomass is regarded as a promising anode material for sodium-ion batteries (SIBs) because of its low operating potential, high capacity, resource availability, and low cost. However, scientific and technological challenges still exist to prepare hard carbon with a high initial Coulombic efficiency (ICE), an excellent rate capability, and good cycling stability. In this work, we report a self-supported hard carbon electrode from fungus-pretreated basswood with an improved graphitization degree and a low tortuosity. Compared with the hard carbon derived from basswood, the hard carbon electrode from fungus-pretreated basswood has an improved rate capability of 242.3 mAh·g−1 at 200 mA·g−1and cycling stability with 93.9% of its capacity retention after 200 cycles at 40 mA·g−1, as well as the increased ICE from 84.3% to 88.2%. Additionally, ex-situ X-ray diffraction indicates that Na+ adsorption caused the sloping capacity, whereas Na+ intercalation between interlayer spacing corresponded to the low potential plateau capacity. This work provides a new perspective for the preparation of high-performance hard carbon and gains the in-depth understanding of Na storage mechanism.
Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.
He, H. N.; Sun, D.; Tang, Y. E.; Wang, H. Y.; Shao, M. H. Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251.
Zhang, Z. Z.; Du, Y. C.; Wang, Q. C.; Xu, J. Y.; Zhou, Y. N.; Bao, J. C.; Shen, J.; Zhou, X. S. A yolk–shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 17504–17510.
Cheng, Z. W.; Fan, X. Y.; Yu, L. Z.; Hua, W. B.; Guo, Y. J.; Feng, Y. H.; Ji, F. D.; Liu, M. T.; Yin, Y. X.; Han, X. G. et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202117728.
Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.
Li, L.; Zhang, D.; Deng, J. P.; Gou, Y. C.; Fang, J. F.; Cui, H.; Zhao, Y. Q.; Cao, M. H. Carbon-based materials for fast charging lithium-ion batteries. Carbon 2021, 183, 721–734.
Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.
Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Hu, Y. S.; Wan, L. J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 2018, 8, 1800855.
Qian, J.; Wu, F.; Ye, Y. S.; Zhang, M. L.; Huang, Y. X.; Xing, Y.; Qu, W.; Li, L.; Chen, R. J. Boosting fast sodium storage of a large-scalable carbon anode with an ultralong cycle life. Adv. Energy Mater. 2018, 8, 1703159.
Wang, M. Y.; Zhao, X. X.; Guo, J. Z.; Nie, X. J.; Gu, Z. Y.; Yang, X.; Wu, X. L. Enhanced electrode kinetics and properties via anionic regulation in polyanionic Na3+xV2(PO4)3−x(P2O7)x cathode material. Green Energy Environ. 2022, 7, 763–771.
Cheng, Z. W.; Zhao, B.; Guo, Y. J.; Yu, L. Z.; Yuan, B. H.; Hua, W. B.; Yin, Y. X.; Xu, S. L.; Xiao, B.; Han, X. G. et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103461.
Gu, Z. Y.; Guo, J. Z.; Cao, J. M.; Wang, X. T.; Zhao, X. X.; Zheng, X. Y.; Li, W. H.; Sun, Z. H.; Liang, H. J.; Wu, X. L. An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv. Mater. 2022, 34, 2110108.
Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.
Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.
Xie, F.; Xu, Z.; Guo, Z. Y.; Lu, Y. X.; Chen, L. Q.; Titirici, M. M.; Hu, Y. S. Disordered carbon anodes for Na-ion batteries—quo vadis? Sci. China Chem. 2021, 64, 1679–1692.
Soltani, N.; Bahrami, A.; Giebeler, L.; Gemming, T.; Mikhailova, D. Progress and challenges in using sustainable carbon anodes in rechargeable metal-ion batteries. Prog. Energy Combust. Sci. 2021, 87, 100929.
Xu, Z. H.; Du, S. L.; Yi, Z. Y.; Han, J. C.; Lai, C. L.; Xu, Y. F.; Zhou, X. S. Water chestnut-derived slope-dominated carbon as a high-performance anode for high-safety potassium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 11410–11417.
Marino, C.; Cabanero, J.; Povia, M.; Villevieille, C. Biowaste lignin-based carbonaceous materials as anodes for Na-ion batteries. J. Electrochem. Soc. 2018, 165, A1400–A1408.
Feng, Y. M.; Tao, L.; Zheng, Z. F.; Huang, H. B.; Lin, F. Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism. Energy Storage Mater. 2020, 31, 274–309.
Yu, K. H.; Wang, X. R.; Yang, H. Y.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508.
Wang, P.; Zhang, G.; Wei, X. Y.; Liu, R.; Gu, J. J.; Cao, F. F. Bioselective synthesis of a porous carbon collector for high-performance sodium-metal anodes. J. Am. Chem. Soc. 2021, 143, 3280–3283.
Zhu, H. L.; Shen, F.; Luo, W.; Zhu, S. Z.; Zhao, M. H.; Natarajan, B.; Dai, J. Q.; Zhou, L. H.; Ji, X. L.; Yassar, R. S. et al. Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 2017, 33, 37–44.
Feng, Y. M.; Tao, L.; He, Y. H.; Jin, Q.; Kuai, C. G.; Zheng, Y. W.; Li, M. Q.; Hou, Q. P.; Zheng, Z. F.; Lin, F. et al. Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. J. Mater. Chem. A 2019, 7, 26954–26965.
Alvin, S.; Chandra, C.; Kim, J. Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chem. Eng. J. 2021, 411, 128490.
Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Xu, X.; Takeuchi, K. J.; Marschilok, A. C.; Takeuchi, E. S.; Yu, G. H. Low-tortuosity thick electrodes with active materials gradient design for enhanced energy storage. ACS Nano 2022, 16, 4805–4812.
Zhao, Z. D.; Sun, M. Q.; Chen, W. J.; Liu, Y.; Zhang, L.; Dongfang, N. C.; Ruan, Y. B.; Zhang, J. J.; Wang, P.; Dong, L. et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 2019, 29, 1809196.
Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600377.
Song, H. Y.; Xu, S. M.; Li, Y. J.; Dai, J. Q.; Gong, A.; Zhu, M. W.; Zhu, C. L.; Chen, C. J.; Chen, Y. N.; Yao, Y. G. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203.
Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N. et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228.
Wang, P.; Ye, H.; Yin, Y. X.; Chen, H.; Bian, Y. B.; Wang, Z. R.; Cao, F. F.; Guo, Y. G. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon. Adv. Mater. 2019, 31, 1805134.
Cheng, J.; Gu, J. J.; Tao, W.; Wang, P.; Liu, L.; Wang, C. Y.; Li, Y. K.; Feng, X. H.; Qiu, G. H.; Cao, F. F. Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water. Bioresour. Technol. 2019, 294, 122149.
Wang, P. F.; Yao, H. R.; Liu, X. Y.; Yin, Y. X.; Zhang, J. N.; Wen, Y.; Yu, X. Q.; Gu, L.; Guo, Y. G. Na+/vacancy disordering promises high-rate Na-ion batteries. Sci. Adv. 2018, 4, eaar6018.
Sun, N.; Guan, Z.; Liu, Y. W.; Cao, Y. L.; Zhu, Q. Z.; Liu, H.; Wang, Z. X.; Zhang, P.; Xu, B. Extended “adsorption–insertion” model: A new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 2019, 9, 1901351.
Zhao, C. D.; Guo, J. Z.; Gu, Z. Y.; Wang, X. T.; Zhao, X. X.; Li, W. H.; Yu, H. Y.; Wu, X. L. Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 2021, 15, 925–932.
Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 13, 3469–3479.
Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.
Wang, P.; Zhang, G.; Li, M. Y.; Yin, Y. X.; Li, J. Y.; Li, G.; Wang, W. P.; Peng, W.; Cao, F. F.; Guo, Y. G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020.
Beda, A.; Rabuel, F.; Morcrette, M.; Knopf, S.; Taberna, P. L.; Simon, P.; Ghimbeu, C. M. Hard carbon key properties allow for the achievement of high coulombic efficiency and high volumetric capacity in Na-ion batteries. J. Mater. Chem. A 2021, 9, 1743–1758.
Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.
Zhang, J.; Wang, D. W.; Lv, W.; Qin, L.; Niu, S. Z.; Zhang, S. W.; Cao, T. F.; Kang, F. Y.; Yang, Q. H. Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges. Adv. Energy Mater. 2018, 8, 1801361.
Jache, M. S. B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.
Xie, F.; Xu, Z.; Jensen, A. C. S.; Au, H.; Lu, Y. X.; Araullo-Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Hard–soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.
Zhang, N.; Liu, Q.; Chen, W. L.; Wan, M.; Li, X. C.; Wang, L. L.; Xue, L. H.; Zhang, W. X. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J. Power Sources 2018, 378, 331–337.
Hou, B. H.; Wang, Y. Y.; Ning, Q. L.; Li, W. H.; Xi, X. T.; Yang, X.; Liang, H. J.; Feng, X.; Wu, X. L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 2019, 31, 1903125.
Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.
Wang, Q. Q.; Zhu, X. S.; Liu, Y. H.; Fang, Y. Y.; Zhou, X. S.; Bao, J. C. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 2018, 127, 658–666.