Graphical Abstract

Aging skeletons display decreased bone mass, increased marrow adiposity, and impaired bone marrow mesenchymal stem cells (MSCs). Apoptosis is a programmed cell death process that generates a large number of apoptotic vesicles (apoVs). Dysregulated apoptosis has been closely linked to senescence-associated diseases. However, whether apoVs mediate aging-related bone loss is not clear. In this study, we showed that young MSC-derived apoVs effectively rejuvenated the nuclear abnormalities of aged bone marrow MSCs and restored their impaired self-renewal, osteo-/adipo-genic lineage differentiation capacities via activating autophagy. Mechanistically, apoptotic young MSCs generated and enriched a high level of Ras-related protein 7 (Rab7) into apoVs. Subsequently, recipient aged MSCs reused apoV-derived Rab7 to restore autolysosomes formation, thereby contributing to autophagy flux activation and MSC rejuvenation. Moreover, systemic infusion of young MSC-derived apoVs enhanced bone mass, reduced marrow adiposity, and recused the impairment of recipient MSCs in aged mice. Our findings reveal the role of apoVs in rejuvenating aging-MSCs via restoring autolysosome formation and provide a potential approach for treating age-related bone loss.
López-Otín, C.; Blasco, M. A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217.
Hooten, N. N.; Pacheco, N. L.; Smith, J. T.; Evans, M. K. The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Res. Rev. 2022, 73, 101536.
He, S. H.; Sharpless, N. E. Senescence in health and disease. Cell 2017, 169, 1000–1011.
Deng, P.; Yuan, Q.; Cheng, Y. D.; Li, J.; Liu, Z. Q.; Liu, Y.; Li, Y.; Su, T.; Wang, J.; Salvo, M. E. et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 2021, 28, 1057–1073.e7.
Kawai, M.; Rosen, C. J. Adiposity and bone accrual—Still an established paradigm? Nat. Rev. Endocrinol. 2010, 6, 63–64.
Yamaza, T.; Miura, Y.; Akiyama, K.; Bi, Y. M.; Sonoyama, W.; Gronthos, S.; Chen, W. J.; Le, A.; Shi, S. T. Mesenchymal stem cell-mediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice. Blood 2009, 113, 2595–2604.
Zaidi, M.; Sun, L.; Blair, H. C. Special stem cells for bone. Cell Stem Cell 2012, 10, 233–234.
Zhang, H. G.; Xu, R. Y.; Li, B.; Xin, Z. L.; Ling, Z. J.; Zhu, W. W.; Li, X.; Zhang, P.; Fu, Y.; Chen, J. Y. et al. LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing mitochondrial function and pluripotency maintenance. Cell Death Differ. 2022, 29, 351–365.
Goodell, M. A.; Rando, T. A. Stem cells and healthy aging. Science 2015, 350, 1199–1204.
Lei, Q.; Gao, F.; Liu, T.; Ren, W. X.; Chen, L.; Cao, Y. L.; Chen, W. L.; Guo, S. J.; Zhang, Q.; Chen, W. Q. et al. Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Sci. Transl. Med. 2021, 13, eaaz8697.
Somiya, M.; Kuroda, S. Reporter gene assay for membrane fusion of extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12171.
Gong, L. Z.; Chen, B.; Zhang, J. T.; Sun, Y. J.; Yuan, J.; Niu, X.; Hu, G. W.; Chen, Y.; Xie, Z. P.; Deng, Z. F. et al. Human ESC-sEVs alleviate age-related bone loss by rejuvenating senescent bone marrow-derived mesenchymal stem cells. J. Extracell. Vesicles 2020, 9, 1800971.
Xiao, X.; Xu, M. Q.; Yu, H. L.; Wang, L. P.; Li, X. X.; Rak, J.; Wang, S. H.; Zhao, R. C. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct. Target. Ther. 2021, 6, 354.
Boulestreau, J.; Maumus, M.; Jorgensen, C.; Noël, D. Extracellular vesicles from mesenchymal stromal cells: Therapeutic perspectives for targeting senescence in osteoarthritis. Adv. Drug Delivery Rev. 2021, 175, 113836.
Tucher, C.; Bode, K.; Schiller, P.; Claßen, L.; Birr, C.; Souto-Carneiro, M. M.; Blank, N.; Lorenz, H. M.; Schiller, M. Extracellular vesicle subtypes released from activated or apoptotic T-lymphocytes carry a specific and stimulus-dependent protein cargo. Front. Immunol. 2018, 9, 534.
Wickman, G. R.; Julian, L.; Mardilovich, K.; Schumacher, S.; Munro, J.; Rath, N.; Zander, S. A.; Mleczak, A.; Sumpton, D.; Morrice, N. et al. Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ. 2013, 20, 1293–1305.
Kakarla, R.; Hur, J.; Kim, Y. J.; Kim, J.; Chwae, Y. J. Apoptotic cell-derived exosomes: Messages from dying cells. Exp. Mol. Med. 2020, 52, 1–6.
Zhang, X.; Tang, J. X.; Kou, X. X.; Huang, W. Y.; Zhu, Y.; Jiang, Y. H.; Yang, K. K.; Li, C.; Hao, M.; Qu, Y. et al. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia A via activating platelet functions. J. Extracell. Vesicles 2022, 11, e12240.
Caruso, S.; Poon, I. K. H. Apoptotic cell-derived extracellular vesicles: More than just debris. Front. Immunol. 2018, 9, 1486.
Wang, J.; Cao, Z. Y.; Wang, P. P.; Zhang, X.; Tang, J. X.; He, Y. F.; Huang, Z. Q.; Mao, X. L.; Shi, S. T.; Kou, X. X. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring Fas-mediated apoptosis. ACS Nano. 2021, 15, 14360–14372.
Zheng, C. X.; Sui, B.; Zhang, X.; Hu, J. C.; Chen, J.; Liu, J.; Wu, D.; Ye, Q. Y.; Xiang, L.; Qiu, X. Y. et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J. Extracell. Vesicles 2021, 10, e12109.
Liu, D. W.; Kou, X. X.; Chen, C.; Liu, S. Y.; Liu, Y.; Yu, W. J.; Yu, T. T.; Yang, R. L.; Wang, R. C.; Zhou, Y. H. et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018, 28, 918–933.
Medina, C. B.; Mehrotra, P.; Arandjelovic, S.; Perry, J. S. A.; Guo, Y. Z.; Morioka, S.; Barron, B.; Walk, S. F.; Ghesquière, B.; Krupnick, A. S. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020, 580, 130–135.
Liu, H.; Liu, S. Y.; Qiu, X. Y.; Yang, X. S.; Bao, L. L.; Pu, F. X.; Liu, X. M.; Li, C. Y.; Xuan, K.; Zhou, J. et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy 2020, 16, 2140–2155.
Argüelles, S.; Guerrero-Castilla, A.; Cano, M.; Muñoz, M. F.; Ayala, A. Advantages and disadvantages of apoptosis in the aging process. Ann. N. Y. Acad. Sci. 2019, 1443, 20–33.
Salminen, A.; Ojala, J.; Kaarniranta, K. Apoptosis and aging: Increased resistance to apoptosis enhances the aging process. Cell. Mol. Life Sci. 2011, 68, 1021–1031.
Leidal, A. M.; Levine, B.; Debnath, J. Autophagy and the cell biology of age-related disease. Nat. Cell Biol. 2018, 20, 1338–1348.
Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R. I.; Simon, A. K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N. et al. Autophagy in healthy aging and disease. Nat. Aging 2021, 1, 634–650.
Kaushik, S.; Tasset, I.; Arias, E.; Pampliega, O.; Wong, E.; Martinez-Vicente, M.; Cuervo, A. M. Autophagy and the hallmarks of aging. Ageing Res. Rev. 2021, 72, 101468.
Rubinsztein, D. C.; Mariño, G.; Kroemer, G. Autophagy and aging. Cell 2011, 146, 682–695.
Ho, T. T.; Warr, M. R.; Adelman, E. R.; Lansinger, O. M.; Flach, J.; Verovskaya, E. V.; Figueroa, M. E.; Passegué, E. Autophagy maintains the metabolism and function of young and old stem cells. Nature 2017, 543, 205–210.
Ma, Y.; Qi, M.; An, Y.; Zhang, L. Q.; Yang, R.; Doro, D. H.; Liu, W. J.; Jin, Y. Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell 2018, 17, e12709.
Liu, F.; Yuan, Y. J.; Bai, L.; Yuan, L. H.; Li, L.; Liu, J. P.; Chen, Y. N.; Lu, Y. R.; Cheng, J. Q.; Zhang, J. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss. Redox Biol. 2021, 43, 101963.
Mizushima, N.; Levine, B.; Cuervo, A. M.; Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451, 1069–1075.
Sasaki, T.; Lian, S. S.; Khan, A.; Llop, J. R.; Samuelson, A. V.; Chen, W. B.; Klionsky, D. J.; Kishi, S. Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase. Autophagy 2017, 13, 386–403.
Ma, L.; Huang, Z. Q.; Wu, D.; Kou, X. X.; Mao, X. L.; Shi, S. T. CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Res. Ther. 2021, 12, 488.
Huang, R. Q.; Qin, C. J.; Wang, J. M.; Hu, Y. Q.; Zheng, G. P.; Qiu, G. G.; Ge, M. H.; Tao, H. K.; Shu, Q.; Xu, J. G. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging 2019, 11, 7996–8014.
Shi, H. Z.; Zeng, J. C.; Shi, S. H.; Giannakopoulos, H.; Zhang, Q. Z.; Le, A. D. Extracellular vesicles of GMSCs alleviate aging-related cell senescence. J. Dent. Res. 2021, 100, 283–292.
Liu, S. Q.; Mahairaki, V.; Bai, H.; Ding, Z.; Li, J. X.; Witwer, K. W.; Cheng, L. Z. Highly purified human extracellular vesicles produced by stem cells alleviate aging cellular phenotypes of senescent human cells. Stem Cells 2019, 37, 779–790.
Zhao, D. Y.; Tao, W. H.; Li, S. H.; Chen, Y.; Sun, Y. H.; He, Z. G.; Sun, B. J.; Sun, J. Apoptotic body-mediated intercellular delivery for enhanced drug penetration and whole tumor destruction. Sci. Adv. 2021, 7, eabg0880.
Baar, M. P.; Brandt, R. M. C.; Putavet, D. A.; Klein, J. D. D.; Derks, K. W. J.; Bourgeois, B. R. M.; Stryeck, S.; Rijksen, Y.; Van Willigenburg, H.; Feijtel, D. A. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017, 169, 132–147.e16.
Hu, L.; Li, H. Q.; Zi, M. T.; Li, W.; Liu, J.; Yang, Y.; Zhou, D. H.; Kong, Q. P.; Zhang, Y. X.; He, Y. H. Why senescent cells are resistant to apoptosis: An insight for senolytic development. Front. Cell Dev. Biol. 2022, 10, 822816.
Akers, J. C.; Gonda, D.; Kim, R.; Carter, B. S.; Chen, C. C. Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J. Neuro Oncol. 2013, 113, 1–11.
Eitan, E.; Suire, C.; Zhang, S.; Mattson, M. P. Impact of lysosome status on extracellular vesicle content and release. Ageing Res. Rev. 2016, 32, 65–74.
Ansari, M. Y.; Ball, H. C.; Wase, S. J.; Novak, K.; Haqqi, T. M. Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of cytochrome c. Osteoarthritis Cartilage 2021, 29, 100–112.
Kitada, M.; Koya, D. Autophagy in metabolic disease and ageing. Nat. Rev. Endocrinol. 2021, 17, 647–661.
Shi, B. H.; Ma, M. Q.; Zheng, Y. T.; Pan, Y. Y.; Lin, X. H. mTOR and Beclin1:Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J. Cell. Physiol. 2019, 234, 12562–12568.
Tian, J.; Kou, X. X.; Wang, R. C.; Jing, H.; Chen, C.; Tang, J. X.; Mao, X. L.; Zhao, B. J.; Wei, X.; Shi, S. T. Autophagy controls mesenchymal stem cell therapy in psychological stress colitis mice. Autophagy 2021, 17, 2586–2603.
Chen, W. L.; Xiao, W. W.; Liu, X. Z.; Yuan, P. P.; Zhang, S. Q.; Wang, Y. G.; Wu, W. Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioact. Mater. 2022, 11, 283–299.
Gong, Y.; Li, Z. Q.; Zou, S. T.; Deng, D. Z.; Lai, P. L.; Hu, H. L.; Yao, Y. Z.; Hu, L.; Zhang, S.; Li, K. et al. Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells. Dev. Cell 2021, 56, 2103–2120.e9.
Li, X.; Xu, J. K.; Dai, B. Y.; Wang, X. L.; Guo, Q. Y.; Qin, L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res. Rev. 2020, 62, 101098.
Zhao, Y. G.; Codogno, P.; Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 2021, 22, 733–750.
Sasaki, T.; Lian, S. S.; Qi, J.; Bayliss, P. E.; Carr, C. E.; Johnson, J. L.; Guha, S.; Kobler, P.; Catz, S. D.; Gill, M. et al. Aberrant autolysosomal regulation is linked to the induction of embryonic senescence: Differential roles of Beclin 1 and p53 in vertebrate Spns1 deficiency. PLoS Genet. 2014, 10, e1004409.
Zhu, H. Y.; Li, Q. Q.; Liao, T. P.; Yin, X.; Chen, Q.; Wang, Z. Y.; Dai, M. F.; Yi, L.; Ge, S. Y.; Miao, C. J. et al. Metabolomic profiling of single enlarged lysosomes. Nat. Methods 2021, 18, 788–798.
Fortunato, F.; Bürgers, H.; Bergmann, F.; Rieger, P.; Büchler, M. W.; Kroemer, G.; Werner, J. Impaired autolysosome formation correlates with Lamp-2 depletion: Role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology 2009, 137, 350–360.e5.
Eskelinen, E. L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 2006, 27, 495–502.
Notomi, S.; Ishihara, K.; Efstathiou, N. E.; Lee, J. J.; Hisatomi, T.; Tachibana, T.; Konstantinou, E. K.; Ueta, T.; Murakami, Y.; Maidana, D. E. et al. Genetic LAMP2 deficiency accelerates the age-associated formation of basal laminar deposits in the retina. Proc. Natl. Acad. Sci. USA 2019, 116, 23724–23734.
Langemeyer, L.; Fröhlich, F.; Ungermann, C. Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol. 2018, 28, 957–970.
Gutierrez, M. G.; Munafó, D. B.; Berón, W.; Colombo, M. I. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 2004, 117, 2687–2697.
Szatmári, Z.; Sass, M. The autophagic roles of Rab small GTPases and their upstream regulators: A review. Autophagy 2014, 10, 1154–1166.
Park, Y. E.; Hayashi, Y. K.; Bonne, G.; Arimura, T.; Noguchi, S.; Nonaka, I.; Nishino, I. Autophagic degradation of nuclear components in mammalian cells. Autophagy 2009, 5, 795–804.
Lan, Y. Y.; Londoño, D.; Bouley, R.; Rooney, M. S.; Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 2014, 9, 180–192.
Qiang, L.; Zhao, B. Z.; Shah, P.; Sample, A.; Yang, S.; He, Y. Y. Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy 2016, 12, 357–368.
Jin, X.; Wang, K. H.; Wang, L.; Liu, W. W.; Zhang, C.; Qiu, Y. X.; Liu, W.; Zhang, H. Y.; Zhang, D.; Yang, Z. X. et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging. Autophagy 2022, 18, 643–660.
Snider, M. D. A role for Rab7 GTPase in growth factor-regulated cell nutrition and apoptosis. Mol. Cell 2003, 12, 796–797.
Lv, Y. J.; Yang, Y.; Sui, B. D.; Hu, C. H.; Zhao, P.; Liao, L.; Chen, J.; Zhang, L. Q.; Yang, T. T.; Zhang, S. F. et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice. Theranostics 2018, 8, 2387–2406.