Graphical Abstract

Regulating the surface plasmon resonance (SPR) of metallic nanostructures is of great interests for optical and catalytic applications, however, it is still a great challenge for tuning SPR features of small metallic nanoparticles (< 10 nm). In this work, we design a unique dielectric support—urchin-like mesoporous silica nanoparticles (U-SiO2) with ordered long spikes on its surface, which can well enhance the SPR properties of ~ 3 nm gold nanocrystals (AuNCs). The U-SiO2 not only realizes the uniform self-assembly of AuNCs, but also prevents their aggregation due to the unique confinement effect. The finite-difference time-domain simulations show that the AuNCs on U-SiO2 can generate plasmonic hot spots with highly enhanced electromagnetic field. Moreover, the hot electrons can be effectively and rapidly transferred through the interface junction to TiO2. Thus, a high visible-light-driven photocatalytic activity can be observed, which is 3.8 times higher than that of smooth photocatalysts. The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.
Liu, D.; Xue, C. Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater. 2021, 33, 2005738.
Liu, Y. S.; Deng, J. P.; Jin, Z. C.; Liu, T. X.; Zhou, J.; Luo, F.; Wang, G. F. A study of plasmon-driven catalytic 4-NBT to DMAB in the dry film by using spatial Raman mapping spectroscopy. Nano Res. 2022, 15, 6062–6066.
Hinman, S. S.; McKeating, K. S.; Cheng, Q. Surface plasmon resonance: Material and interface design for universal accessibility. Anal. Chem. 2018, 90, 19–39.
Yi, J.; You, E. M.; Ding, S. Y.; Tian, Z. Q. Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl. Sci. Rev. 2020, 7, 1228–1238.
Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204.
Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 2019, 10, 2671.
Li, S. S.; Huang, H.; Shao, L.; Wang, J. F. How to utilize excited Plasmon energy efficiently. ACS Nano 2021, 15, 10759–10768.
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.
Kaefer, K.; Krüger, K.; Schlapp, F.; Uzun, H.; Celiksoy, S.; Flietel, B.; Heimann, A.; Schroeder, T.; Kempski, O.; Sönnichsen, C. Implantable sensors based on gold nanoparticles for continuous long-term concentration monitoring in the body. Nano Lett. 2021, 21, 3325–3330.
Zhan, C.; Chen, X. J.; Yi, J.; Li, J. F.; Wu, D. Y.; Tian, Z. Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2018, 2, 216–230.
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
Zhang, C. P.; Chen, S.; Jiang, Z. L.; Shi, Z. Y.; Wang, J. L.; Du, L. T. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 29222–29229.
Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photon. 2007, 1, 641–648.
Gao, X. X.; Zhang, J. J.; Luo, Y.; Ma, Q.; Bai, G. D.; Zhang, H. C.; Cui, T. J. Reconfigurable parametric amplifications of spoof surface plasmons. Adv. Sci. (Weinh. ) 2021, 8, 2100795.
Shi, K. Z.; Chen, Z. Y.; Xu, X. N.; Evans, J.; He, S. L. Optimized colossal near-field thermal radiation enabled by manipulating coupled Plasmon polariton geometry. Adv. Mater. 2021, 33, 2106097.
Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Volz, S.; Daiguji, H.; Delaunay, J. J. Ultranarrow and wavelength-tunable thermal emission in a hybrid metal-optical Tamm state structure. ACS Photon. 2020, 7, 1569–1576.
Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.
Ivanchenko, M.; Nooshnab, V.; Myers, A. F.; Large, N.; Evangelista, A. J.; Jing, H. Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures. Nano Res. 2022, 15, 1579–1586.
Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W. A.; Jacak, J. E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751.
Bao, Z. Y.; Fu, N. Q.; Qin, Y. Q.; Lv, J.; Wang, Y.; He, J. J.; Hou, Y. D.; Jiao, C. Y.; Chen, D. C.; Wu, Y. C. et al. Broadband plasmonic enhancement of high-efficiency dye-sensitized solar cells by incorporating Au@Ag@SiO2 core–shell nanocuboids. ACS Appl. Mater. Interfaces 2020, 12, 538–545.
Atta, S.; Pennington, A. M.; Celik, F. E.; Fabris, L. TiO2 on gold nanostars enhances photocatalytic water reduction in the near-infrared regime. Chem 2018, 4, 2140–2153.
Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, H. L.; Duan, X. F.; Huang, Y. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem., Int. Ed. 2013, 52, 6063–6067.
Yu, G. Y.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W. X.; Yan, W. F.; Liu, G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.
Ma, J. M.; Liu, X. F.; Wang, R. W.; Zhang, F.; Tu, G. L. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022, 15, 5671–5677.
Kumar, A.; Kumari, N.; Dubbu, S.; Kumar, S.; Kwon, T.; Koo, J. H.; Lim, J.; Kim, I.; Cho, Y. K.; Rho, J. et al. Nanocatalosomes as plasmonic bilayer shells with interlayer catalytic nanospaces for solar-light-induced reactions. Angew. Chem., Int. Ed. 2020, 59, 9460–9469.
Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed M, A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.
Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309–6315.
Weng, B.; Lu, K. Q.; Tang, Z. C.; Chen, H. M.; Xu, Y. J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 2018, 9, 1543.
Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 2016, 10, 473–482.
Naya, S. I.; Niwa, T.; Kume, T.; Tada, H. Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem., Int. Ed. 2014, 53, 7305–7309.
Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.
Dutta, S. K.; Mehetor, S. K.; Pradhan, N. Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 2015, 6, 936–944.
Lee, J. H.; Shin, Y.; Lee, W.; Whang, K.; Kim, D.; Lee, L. P.; Choi, J. W.; Kang, T. General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci. Adv. 2016, 2, 1601838.
Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.
Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core–shell heterostructure design for broadband light driven catalysis. Chem. Sci. 2018, 9, 8914–8922.
Zhang, Y. L.; Zhang, J. Y.; Zhang, B. S.; Si, R.; Han, B.; Hong, F.; Niu, Y. M.; Sun, L.; Li, L.; Qiao, B. T. et al. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 2020, 11, 558.
Koo, W. T.; Kim, Y.; Savagatrup, S.; Yoon, B.; Jeon, I.; Choi, S. J.; Kim, I. D.; Swager, T. M. Porous ion exchange polymer matrix for ultrasmall Au nanoparticle-decorated carbon nanotube chemiresistors. Chem. Mater. 2019, 31, 5413–5420.
Wang, W. X.; Wang, P. Y.; Tang, X. T.; Elzatahry, A. A.; Wang, S. W.; Al-Dahyan, D.; Zhao, M. Y.; Yao, C.; Hung, C. T.; Zhu, X. H. et al. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent. Sci. 2017, 3, 839–846.
Duff, D. G.; Baiker, A.; Edwards, P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301–2309.
Bahng, J. H.; Yeom, B.; Wang, Y. C.; Tung, S. O.; Hoff, J. D.; Kotov, N. Anomalous dispersions of “hedgehog” particles. Nature 2015, 517, 596–599.
Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.
Liu, W. D.; Liu, X. Y.; Xiang, S. Y.; Chen, Y. X.; Fang, L. P.; Yang, B. Functional interface based on silicon artificial chamfer nanocylinder arrays (CNCAs) with underwater superoleophobicity and anisotropic properties. Nano Res. 2016, 9, 3141–3151.
Yu, Y.; Xie, Y. J.; Zeng, P.; Zhang, D.; Liang, R. Q.; Wang, W. X.; Ou, Q. R.; Zhang, S. Y. Morphology-tailored gold nanoraspberries based on seed-mediated space-confined self-assembly. Nanomaterials (Basel) 2019, 9, 1202.
Liu, X.; Yang, Y.; Mao, L. G.; Li, Z. J.; Zhou, C. J.; Liu, X. H.; Zheng, S.; Hu, Y. X. SPR quantitative analysis of direct detection of atrazine traces on Au-nanoparticles: Nanoparticles size effect. Sensor. Actuat. B Chem. 2015, 218, 1–7.
Qian, K.; Sweeny, B. C.; Johnston-Peck, A. C.; Niu, W. X.; Graham, J. O.; DuChene, J. S.; Qiu, J. J.; Wang, Y. C.; Engelhard, M. H.; Su, D. et al. Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842–9845.
Wu, S. Q.; Hu, H. Y.; Lin, Y.; Zhang, J. L.; Hu, Y. H. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842.
Li, C. M.; Yu, S. Y.; Che, H. N.; Zhang, X. X.; Han, J.; Mao, Y. L.; Wang, Y.; Liu, C. B.; Dong, H. J. Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water. ACS Sustainable Chem. Eng. 2018, 6, 16437–16447.
Wang, X. N.; Jia, J. P.; Wang, Y. L. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274–282.
Ji, B.; Zhang, J. X.; Zhang, C.; Li, N.; Zhao, T. T.; Chen, F.; Hu, L. H.; Zhang, S. D.; Wang, Z. Y. Vertically aligned ZnO@ZnS nanorod chip with improved photocatalytic activity for antibiotics degradation. ACS Appl. Nano Mater. 2018, 1, 793–799.
Wu, Z. J.; Guo, K.; Cao, S.; Yao, W. Q.; Piao, L. Y. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res. 2020, 13, 551–556.