AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hot spots engineering by dielectric support for enhanced photocatalytic redox reactions

Yan Yu1,2Yujun Xie2Pengfei Zhang1Wei Zhang1,3Wenxing Wang1( )Shuyu Zhang2( )Qiongrong Ou2Wei Li1( )
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai 200433, China
Zhuhai Fudan Innovation Institute, Guangdong-Macao In-Depth Cooperation Zone in Hengqin, Zhuhai 519000, China
Show Author Information

Graphical Abstract

A space-confined self-assembly strategy is proposed for the preparation of urchin-like photocatalyst U-SiO2@Au@TiO2 to enhance the surface plasmon resonance (SPR) effect of sub-5 nm gold nanocrystals (AuNCs) and facilitate the efficient hot electron transfer from Au to TiO2.

Abstract

Regulating the surface plasmon resonance (SPR) of metallic nanostructures is of great interests for optical and catalytic applications, however, it is still a great challenge for tuning SPR features of small metallic nanoparticles (< 10 nm). In this work, we design a unique dielectric support—urchin-like mesoporous silica nanoparticles (U-SiO2) with ordered long spikes on its surface, which can well enhance the SPR properties of ~ 3 nm gold nanocrystals (AuNCs). The U-SiO2 not only realizes the uniform self-assembly of AuNCs, but also prevents their aggregation due to the unique confinement effect. The finite-difference time-domain simulations show that the AuNCs on U-SiO2 can generate plasmonic hot spots with highly enhanced electromagnetic field. Moreover, the hot electrons can be effectively and rapidly transferred through the interface junction to TiO2. Thus, a high visible-light-driven photocatalytic activity can be observed, which is 3.8 times higher than that of smooth photocatalysts. The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4712_MOESM1_ESM.pdf (2.2 MB)

References

[1]

Liu, D.; Xue, C. Plasmonic coupling architectures for enhanced photocatalysis. Adv. Mater. 2021, 33, 2005738.

[2]

Liu, Y. S.; Deng, J. P.; Jin, Z. C.; Liu, T. X.; Zhou, J.; Luo, F.; Wang, G. F. A study of plasmon-driven catalytic 4-NBT to DMAB in the dry film by using spatial Raman mapping spectroscopy. Nano Res. 2022, 15, 6062–6066.

[3]

Hinman, S. S.; McKeating, K. S.; Cheng, Q. Surface plasmon resonance: Material and interface design for universal accessibility. Anal. Chem. 2018, 90, 19–39.

[4]

Yi, J.; You, E. M.; Ding, S. Y.; Tian, Z. Q. Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy. Natl. Sci. Rev. 2020, 7, 1228–1238.

[5]

Schuller, J. A.; Barnard, E. S.; Cai, W. S.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193–204.

[6]

Zhan, C.; Liu, B. W.; Huang, Y. F.; Hu, S.; Ren, B.; Moskovits, M.; Tian, Z. Q. Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures. Nat. Commun. 2019, 10, 2671.

[7]

Li, S. S.; Huang, H.; Shao, L.; Wang, J. F. How to utilize excited Plasmon energy efficiently. ACS Nano 2021, 15, 10759–10768.

[8]

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

[9]

Kaefer, K.; Krüger, K.; Schlapp, F.; Uzun, H.; Celiksoy, S.; Flietel, B.; Heimann, A.; Schroeder, T.; Kempski, O.; Sönnichsen, C. Implantable sensors based on gold nanoparticles for continuous long-term concentration monitoring in the body. Nano Lett. 2021, 21, 3325–3330.

[10]

Zhan, C.; Chen, X. J.; Yi, J.; Li, J. F.; Wu, D. Y.; Tian, Z. Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2018, 2, 216–230.

[11]

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

[12]

Zhang, C. P.; Chen, S.; Jiang, Z. L.; Shi, Z. Y.; Wang, J. L.; Du, L. T. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 29222–29229.

[13]

Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photon. 2007, 1, 641–648.

[14]

Gao, X. X.; Zhang, J. J.; Luo, Y.; Ma, Q.; Bai, G. D.; Zhang, H. C.; Cui, T. J. Reconfigurable parametric amplifications of spoof surface plasmons. Adv. Sci. (Weinh. ) 2021, 8, 2100795.

[15]

Shi, K. Z.; Chen, Z. Y.; Xu, X. N.; Evans, J.; He, S. L. Optimized colossal near-field thermal radiation enabled by manipulating coupled Plasmon polariton geometry. Adv. Mater. 2021, 33, 2106097.

[16]

Wang, Z. Y.; Clark, J. K.; Ho, Y. L.; Volz, S.; Daiguji, H.; Delaunay, J. J. Ultranarrow and wavelength-tunable thermal emission in a hybrid metal-optical Tamm state structure. ACS Photon. 2020, 7, 1569–1576.

[17]

Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

[18]

Ivanchenko, M.; Nooshnab, V.; Myers, A. F.; Large, N.; Evangelista, A. J.; Jing, H. Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures. Nano Res. 2022, 15, 1579–1586.

[19]

Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W. A.; Jacak, J. E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751.

[20]

Bao, Z. Y.; Fu, N. Q.; Qin, Y. Q.; Lv, J.; Wang, Y.; He, J. J.; Hou, Y. D.; Jiao, C. Y.; Chen, D. C.; Wu, Y. C. et al. Broadband plasmonic enhancement of high-efficiency dye-sensitized solar cells by incorporating Au@Ag@SiO2 core–shell nanocuboids. ACS Appl. Mater. Interfaces 2020, 12, 538–545.

[21]

Atta, S.; Pennington, A. M.; Celik, F. E.; Fabris, L. TiO2 on gold nanostars enhances photocatalytic water reduction in the near-infrared regime. Chem 2018, 4, 2140–2153.

[22]

Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, H. L.; Duan, X. F.; Huang, Y. Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem., Int. Ed. 2013, 52, 6063–6067.

[23]

Yu, G. Y.; Qian, J.; Zhang, P.; Zhang, B.; Zhang, W. X.; Yan, W. F.; Liu, G. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.

[24]

Ma, J. M.; Liu, X. F.; Wang, R. W.; Zhang, F.; Tu, G. L. Plasmon-induced near-field and resonance energy transfer enhancement of photodegradation activity by Au wrapped CuS dual-chain. Nano Res. 2022, 15, 5671–5677.

[25]

Kumar, A.; Kumari, N.; Dubbu, S.; Kumar, S.; Kwon, T.; Koo, J. H.; Lim, J.; Kim, I.; Cho, Y. K.; Rho, J. et al. Nanocatalosomes as plasmonic bilayer shells with interlayer catalytic nanospaces for solar-light-induced reactions. Angew. Chem., Int. Ed. 2020, 59, 9460–9469.

[26]

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed M, A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

[27]

Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309–6315.

[28]

Weng, B.; Lu, K. Q.; Tang, Z. C.; Chen, H. M.; Xu, Y. J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 2018, 9, 1543.

[29]

Zhang, N.; Han, C.; Xu, Y. J.; Foley IV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 2016, 10, 473–482.

[30]

Naya, S. I.; Niwa, T.; Kume, T.; Tada, H. Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem., Int. Ed. 2014, 53, 7305–7309.

[31]

Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

[32]

Dutta, S. K.; Mehetor, S. K.; Pradhan, N. Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 2015, 6, 936–944.

[33]

Lee, J. H.; Shin, Y.; Lee, W.; Whang, K.; Kim, D.; Lee, L. P.; Choi, J. W.; Kang, T. General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci. Adv. 2016, 2, 1601838.

[34]

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

[35]

Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core–shell heterostructure design for broadband light driven catalysis. Chem. Sci. 2018, 9, 8914–8922.

[36]

Zhang, Y. L.; Zhang, J. Y.; Zhang, B. S.; Si, R.; Han, B.; Hong, F.; Niu, Y. M.; Sun, L.; Li, L.; Qiao, B. T. et al. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 2020, 11, 558.

[37]

Koo, W. T.; Kim, Y.; Savagatrup, S.; Yoon, B.; Jeon, I.; Choi, S. J.; Kim, I. D.; Swager, T. M. Porous ion exchange polymer matrix for ultrasmall Au nanoparticle-decorated carbon nanotube chemiresistors. Chem. Mater. 2019, 31, 5413–5420.

[38]

Wang, W. X.; Wang, P. Y.; Tang, X. T.; Elzatahry, A. A.; Wang, S. W.; Al-Dahyan, D.; Zhao, M. Y.; Yao, C.; Hung, C. T.; Zhu, X. H. et al. Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization. ACS Cent. Sci. 2017, 3, 839–846.

[39]

Duff, D. G.; Baiker, A.; Edwards, P. P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301–2309.

[40]

Bahng, J. H.; Yeom, B.; Wang, Y. C.; Tung, S. O.; Hoff, J. D.; Kotov, N. Anomalous dispersions of “hedgehog” particles. Nature 2015, 517, 596–599.

[41]

Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.

[42]

Liu, W. D.; Liu, X. Y.; Xiang, S. Y.; Chen, Y. X.; Fang, L. P.; Yang, B. Functional interface based on silicon artificial chamfer nanocylinder arrays (CNCAs) with underwater superoleophobicity and anisotropic properties. Nano Res. 2016, 9, 3141–3151.

[43]

Yu, Y.; Xie, Y. J.; Zeng, P.; Zhang, D.; Liang, R. Q.; Wang, W. X.; Ou, Q. R.; Zhang, S. Y. Morphology-tailored gold nanoraspberries based on seed-mediated space-confined self-assembly. Nanomaterials (Basel) 2019, 9, 1202.

[44]

Liu, X.; Yang, Y.; Mao, L. G.; Li, Z. J.; Zhou, C. J.; Liu, X. H.; Zheng, S.; Hu, Y. X. SPR quantitative analysis of direct detection of atrazine traces on Au-nanoparticles: Nanoparticles size effect. Sensor. Actuat. B Chem. 2015, 218, 1–7.

[45]

Qian, K.; Sweeny, B. C.; Johnston-Peck, A. C.; Niu, W. X.; Graham, J. O.; DuChene, J. S.; Qiu, J. J.; Wang, Y. C.; Engelhard, M. H.; Su, D. et al. Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842–9845.

[46]

Wu, S. Q.; Hu, H. Y.; Lin, Y.; Zhang, J. L.; Hu, Y. H. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 2020, 382, 122842.

[47]

Li, C. M.; Yu, S. Y.; Che, H. N.; Zhang, X. X.; Han, J.; Mao, Y. L.; Wang, Y.; Liu, C. B.; Dong, H. J. Fabrication of Z-scheme heterojunction by anchoring mesoporous γ-Fe2O3 nanospheres on g-C3N4 for degrading tetracycline hydrochloride in water. ACS Sustainable Chem. Eng. 2018, 6, 16437–16447.

[48]

Wang, X. N.; Jia, J. P.; Wang, Y. L. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274–282.

[49]

Ji, B.; Zhang, J. X.; Zhang, C.; Li, N.; Zhao, T. T.; Chen, F.; Hu, L. H.; Zhang, S. D.; Wang, Z. Y. Vertically aligned ZnO@ZnS nanorod chip with improved photocatalytic activity for antibiotics degradation. ACS Appl. Nano Mater. 2018, 1, 793–799.

[50]

Wu, Z. J.; Guo, K.; Cao, S.; Yao, W. Q.; Piao, L. Y. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res. 2020, 13, 551–556.

Nano Research
Pages 239-247
Cite this article:
Yu Y, Xie Y, Zhang P, et al. Hot spots engineering by dielectric support for enhanced photocatalytic redox reactions. Nano Research, 2023, 16(1): 239-247. https://doi.org/10.1007/s12274-022-4712-9
Topics:

931

Views

3

Crossref

4

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 01 June 2022
Revised: 26 June 2022
Accepted: 27 June 2022
Published: 12 August 2022
© Tsinghua University Press 2022
Return