AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light

Yuanyuan Cheng1Yixian Liu1Yunliang Liu1Yaxi Li1Ruqiang Wu1Yongchao Du1Najmeh Askari1Naiyun Liu1Fen Qiao1Chenghua Sun2( )Zhenhui Kang3( )Haitao Li1( )
Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
Faculty of Science, Engineering & Technology, Swinburne University of Technology, Victoria 3122, Australia
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

A facile microwave-related synthesis method of Mn3O4/FeNbO4 type II heterojunction photocatalyst with a core-satellite structure was developed. The prepared Mn3O4/FeNbO4 type II photocatalyst exhibits obvious enhanced catalytic properties in the photocatalytic CO2 reduction reaction, where the CH4 yielding rate is 1.96 and 9.81 times those of FeNbO4 and Mn3O4, respectively. This work provides a promising strategy for designing an efficient photocatalyst applied for CO2 reduction reaction.

Abstract

Photocatalytic reduction of carbon dioxide into valuable chemicals is a sustainable and promising technology that alleviates the greenhouse effect and energy crisis. In this study, the Mn3O4/FeNbO4 type II heterojunction photocatalyst with a core-satellite structure was synthesized by the facile soft chemical method. The formation of a nano-heterojunction is supposed to effectively improve light capture, charge transfer, and interfacial charge separation in the photochemical reaction. Meanwhile, the heterojunction has a good ability to capture and activate CO2. Our results show that the prepared Mn3O4/FeNbO4 photocatalyst exhibit obvious enhanced catalytic properties in the photocatalytic CO2 reduction reaction, where the CH4 yielding rate is 1.96 and 9.81 times those of FeNbO4 and Mn3O4, respectively. The transient photovoltage test (TPV) shows that the low frequency electrons are crucial to the effective transfer of photogenerated electrons and holes in the Mn3O4/FeNbO4 nano heterojunctions. Analysis of in situ Fourier transform infrared spectroscopy (FTIR) verifies the effective CO2 adsorption on the Mn3O4/FeNbO4 surface and the high selectivity of CH4 products. These properties of the Mn3O4/FeNbO4 photocatalyst infer its broad prospects in the fields of carbon fixation and energy conservation.

Electronic Supplementary Material

Download File(s)
12274_2022_4714_MOESM1_ESM.pdf (719.5 KB)

References

1

Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

2

Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.

3

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

4

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

5

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

6

Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 2022, 18, 2105228.

7

Wang, L.; Liu, G. P.; Wang, B.; Chen, X.; Wang, C. T.; Lin, Z. X.; Xia, J. X.; Li, H. M. Oxygen vacancies engineering-mediated BiOBr atomic layers for boosting visible light-driven photocatalytic CO2 reduction. Solar RRL 2021, 5, 2000480.

8

Askari, N.; Farhadian, M.; Mowla, D.; Beheshti, M. Evaluating the binary Z-scheme Bi2S3/CuWO4 immobilized on FTO as a visible-light-driven photocatalyst for metronidazole degradation-response surface method. Appl. Phys. A 2021, 127, 766.

9

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF Encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

10

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

11

Cheng, J. L.; Mu, Y. F.; Wu, L. Y.; Liu, Z. L.; Su, K.; Dong, G. X.; Zhang, M.; Lu, T. B. Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction. Nano Res. 2022, 15, 1845–1852.

12

Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.

13

Askari, N.; Beheshti, M.; Mowla, D.; Farhadian, M. Synthesis of CuWO4/Bi2S3 Z-scheme heterojunction with enhanced cephalexin photodegradation. J. Photochem. Photobiol. A:Chem. 2020, 394, 112463.

14

Chen, Q. T.; Liu, Y. H.; Gu, X. Q.; Li, D.; Zhang, D. X.; Zhang, D. Q.; Huang, H.; Mao, B. D.; Kang, Z. H.; Shi, W. D. Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu–In–Zn–S QDs/MoS2 photocatalysts. Appl. Catal. B:Environ. 2022, 301, 120755.

15

Gong, S. Q.; Teng, X.; Niu, Y. L.; Liu, X.; Xu, M. Z.; Xu, C.; Ji, L.; Chen, Z. F. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Appl. Catal. B:Environ. 2021, 298, 120521.

16

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

17

Nie, H. D.; Liu, Y.; Li, Y.; Wei, K. Q.; Wu, Z. Y.; Shi, H.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. In situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity. Nano Res. 2022, 15, 1786–1795.

18

Lu, Y. L.; Liu, M. H.; Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F. Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res. 2022, 15, 3042–3049.

19

Jiang, J. J.; Wang, Y.; Wang, D. S.; Zhang, W. W.; Li, Y. D. Synthesis, structures of 2D coordination layers metal-organic frameworks with highly selective CO2 uptake. Chin. J. Chem. 2021, 39, 2789–2794.

20

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

21

Kuriki, R.; Ichibha, T.; Hongo, K.; Lu, D. L.; Maezono, R.; Kageyama, H.; Ishitani, O.; Oka, K.; Maeda, K. A stable, Narrow-gap oxyfluoride photocatalyst for visible-light hydrogen evolution and carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 6648–6655.

22

Khan, S.; Hussain, A.; He, K. X.; Liu, B. X.; Imran, Z.; Ambreen, J.; Hassan, S.; Ahmad, M.; Batool, S. S.; Li, C. B. Tailoring the bandgap of Mn3O4 for visible light driven photocatalysis. J. Environ. Manage. 2021, 293, 112854.

23

Bian, J.; Zhang, Z. Q.; Feng, J. N.; Thangamuthu, M.; Yang, F.; Sun, L.; Li, Z. J.; Qu, Y.; Tang, D. Y.; Lin, Z. W. et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew. Chem., Int. Ed. 2021, 60, 20906–20914.

24

Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Geioushy, R. A.; Li, Y. X.; Liu, Y. X.; Zhou, F. L.; Li, H. T.; Sun, C. H. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. 2021, 16, 53503.

25

Wei, L. F.; Yu, C. L.; Zhang, Q. H.; Liu, H.; Wang, Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A 2018, 6, 22411–22436.

26

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

27

Zhang, H.; Bai, X. F. Photocatalytic production of hydrogen peroxide over Z-scheme Mn3O4/Co9S8 with p–n heterostructure. Appl. Catal. B:Environ. 2021, 298, 120516.

28

Xu, Q.; Zhang, J.; Wang, D. S.; Li, Y. D. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

29

Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B:Environ. 2021, 289, 120035.

30

Zhang, Z. D.; Wang, D. S. Single-atom catalysts: Stimulating electrochemical CO2 reduction reaction in the industrial era. J. Mater. Chem. A 2022, 10, 5863–5877.

31

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

32

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

33

Ahmed, S. H.; Bakiro, M.; Alzamly, A. Photocatalytic activities of FeNbO4/NH2-MIL-125(Ti) composites toward the cycloaddition of CO2 to propylene oxide. Molecules 2021, 26, 1693.

34

Zhang, H. M.; Kim, Y. K.; Jeong, H. Y.; Lee, J. S. A few atomic FeNbO4 overlayers on hematite nanorods: Microwave-induced high temperature phase for efficient photoelectrochemical water splitting. ACS Catal. 2019, 9, 1289–1297.

35

Liang, X.; Ji, S. F.; Chen, Y. J.; Wang, D. S. Synthetic strategies for MOF-based single-atom catalysts for photo- and electro-catalytic CO2 reduction. iScience 2022, 25, 104177.

36

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

37

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

38

Zhu, X. W.; Huang, S. Q.; Yu, Q.; She, Y. B.; Yang, J. M.; Zhou, G. L.; Li, Q. D.; She, X. J.; Deng, J. J.; Li, H. M. et al. In situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B:Environ. 2020, 269, 118760.

39

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

40

Xiang, X. L.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Lv, H. J. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small 2020, 16, 2001024.

41

Li, H. T.; Liu, Y. D.; Liu, Y. L.; Wang, L. Z.; Tang, R.; Deng, P. J.; Xu, Z. Q.; Haynes, B.; Sun, C. H.; Huang, J. Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B:Environ. 2021, 281, 119476.

42

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p–d Orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

43

Sun, M. Y.; Zhao, B. H.; Chen, F. P.; Liu, C. B.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280.

44

Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

45

Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

46
Shi, W. N.; Wang, J. C.; Guo, X. W.; Qiao, X.; Liu, F.; Li, R. L.; Zhang, W. Q.; Hou, Y. X.; Han, H. J. Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4271-0.
47

Maeda, K. Metal-complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light. Adv. Mater. 2019, 31, 1808205.

48

Zhang, W.; Zhou, T. H.; Hong, J. D.; Xu, R. MoS3 loaded TiO2 nanoplates for photocatalytic water and carbon dioxide reduction. J. Energy Chem. 2016, 25, 500–506.

49
ZhuangZ. C.LiY.HuangJ. Z.LiZ. L.ZhaoK. N.ZhaoY. L.XuL.ZhouL.MoskalevaL. V.MaiL. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edgeSci. Bull.20196461762410.1016/j.scib.2019.04.005

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

50

Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.

51

Li, Y.; Zhao, Y.; Wu, J.; Han, Y. D.; Huang, H.; Liu, Y.; Kang, Z. H. Photo-charge regulation of metal-free photocatalyst by carbon dots for efficient and stable hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 25453–25462.

52

Gagrani, A.; Ding, B. L.; Wang, Y.; Tsuzuki, T. pH Dependent catalytic redox properties of Mn3O4 nanoparticles. Mater. Chem. Phys. 2019, 231, 41–47.

53

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

54

Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Zhang, X. L.; Sun, C. H.; Li, H. T. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6694–6709.

55

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

56
Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4298-2.
57

Li, H. T.; Liu, R. H.; Lian, S. Y.; Liu, Y.; Huang, H.; Kang, Z. H. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 2013, 5, 3289–3297.

58

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. 2010, 122, 4532–4536.

59

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

60

Zhang, Z. F.; Huang, B. Q.; Qian, Q. K.; Gao, Z. B.; Tang, X.; Li, B. K. Strain-tunable III-nitride/ZnO heterostructures for photocatalytic water-splitting: A hybrid functional calculation. APL Mater. 2020, 8, 041114.

61

Gan, L.; Yu, R.; Luo, J.; Cheng, Z. Y.; Zhu, J. Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J. Phys. Chem. Lett. 2012, 3, 934–938.

62

Jansonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P. Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett. 2019, 4, 980–986.

63

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water spli tting by strain engineering. Adv. Mater. 2019, 31, 1807001.

64

Wang, Y. C.; Xu, L.; Zhan, L. S.; Yang, P. Y.; Tang, S. H.; Liu, M. J.; Zhao, X.; Xiong, Y.; Chen, Z. Y.; Lei, Y. P. Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn–CO2 batteries. Nano Energy 2022, 92, 106780.

65

Wang, Y. C.; Huang, Z. S.; Lei, Y. P.; Wu, Y.; Bai, Y.; Zhao, X.; Liu, M. J.; Zhan, L. S.; Tang, S. H.; Zhang, X. B. et al. Bismuth with abundant defects for electrocatalytic CO2 reduction and Zn–CO2 batteries. Chem. Commun. 2022, 58, 3621–3624.

66

Wang, L.; Huang, G. F.; Zhang, L.; Lian, R.; Huang, J. W.; She, H. D.; Liu, C. L.; Wang, Q. Z. Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem. 2022, 64, 85–92.

67

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

68

Li, H. T.; He, X. D.; Liu, Y.; Huang, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 2011, 49, 605–609.

69

Liu, Y.; Chu, C.; Li, Y.; Deng, P.; Liu, Y.; Wu, R.; Liu, X.; Zheng, Y.; Zhang, W.; Wu, J. et al. Enhanced supercapacitor performance of Bi2O3 by Mn doping. J. Alloys Compd. 2022, 914, 165258.

Nano Research
Pages 8880-8889
Cite this article:
Cheng Y, Liu Y, Liu Y, et al. A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Research, 2022, 15(10): 8880-8889. https://doi.org/10.1007/s12274-022-4714-7
Topics:

971

Views

30

Crossref

27

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 24 May 2022
Revised: 27 June 2022
Accepted: 28 June 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return