AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Aromatic alcohols oxidation and hydrogen evolution over π-electron conjugated porous carbon nitride rods

Jiawei Xia1,2Neeta Karjule2Gabriel Mark2Michael Volokh2Haiqun Chen1Menny Shalom2( )
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
Show Author Information

Graphical Abstract

Melem and a co-monomer (carbon-rich substituted melem) construct a supramolecular assembly to synthesize carbon-doped porous carbon nitride (CN) rods with extended π-electron conjugation. The optimal CN material shows excellent photocatalytic activity towards hydrogen evolution reaction via water splitting and selective oxidation reaction of aromatic alcohols.

Abstract

Photocatalysis using polymeric carbon nitride (CN) materials is a constantly evolving field, where the variation of synthetic procedures allows the constant improvement of activity by tackling the intrinsic limitations of these materials (optical absorbance, specific surface area, charge migration, etc.). Amongst the possible photocatalytic reactions, the most popular application of CNs is the hydrogen evolution reaction (HER) from water. In this work, we design precisely-controlled carbon-doped porous CN rods with extended π-electron conjugation from supramolecular assemblies of melem and co-monomers, which partially substitute nitrogen for carbon atoms at the pyrimidine ring of the melem. Dense hydrogen bonds and good thermal stability of the melem-based supramolecular framework allow synthesizing a more ordered structure for improved charge migration; the control from the molecular level over the position of carbon-substituted nitrogen positions tailors the band alignment and photogenerated charge separation. The optimal photocatalyst shows an excellent HER rate (up to 10.16 mmol·h−1·g−1 under 100 W white light-emitting diode (LED) irradiation, with an apparent quantum efficiency of 20.0% at 405 nm, which is 23.2 times higher compared to a reference bulk CN). To fully harness the benefits of the developed metal-free CNs, selective oxidation reaction of aromatic alcohols is demonstrated with high conversion and selectivity.

Electronic Supplementary Material

Download File(s)
12274_2022_4717_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Lau, V. W. H.; Lotsch, B. V. A tour-guide through carbon nitride-land: Structure- and dimensionality-dependent properties for photo(electro)chemical energy conversion and storage. Adv. Energy Mater. 2022, 12, 2101078.

[2]

Lin, L. H.; Lin, Z. Y.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z. Y.; Wang, X. C. Molecular-level insights on the reactive facet of carbon nitride single crystals photocatalysing overall water splitting. Nat. Catal. 2020, 3, 649–655.

[3]

Liu, M. H.; Wei, C. G.; Zhuzhang, H. Y.; Zhou, J. M.; Pan, Z. M.; Lin, W.; Yu, Z. Y.; Zhang, G. G.; Wang, X. C. Fully condensed poly (triazine imide) crystals: Extended π-conjugation and structural defects for overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202113389.

[4]

Zhou, Z. Y.; Xie, Y. N.; Zhu, W. Z.; Zhao, H. Y.; Yang, N. J.; Zhao, G. H. Selective photoelectrocatalytic tuning of benzyl alcohol to benzaldehyde for enhanced hydrogen production. Appl. Catal. B 2021, 286, 119868.

[5]

Yi, X. T.; Wang, T. L.; Wen, L. Z.; Xu, J.; Xue, B. Selective oxidation of benzyl alcohol with oxygen catalyzed by vanadia supported on nitrogen-containing ordered mesoporous carbon materials. Catal. Lett. 2022, 152, 962–971.

[6]

Yang, J. J.; Wang, H.; Jiang, L. B.; Yu, H. B.; Zhao, Y. L.; Chen, H. Y.; Yuan, X. Z.; Liang, J.; Li, H.; Wu, Z. B. Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 2022, 427, 130991.

[7]

Barrio, J.; Volokh, M.; Shalom, M. Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 11075–11116.

[8]

Pan, Z. M.; Liu, M. H.; Zhang, G. G.; Zhuzhang, H. Y.; Wang, X. C. Molecular triazine-heptazine junctions promoting exciton dissociation for overall water splitting with visible light. J. Phys. Chem. C 2021, 125, 9818–9826.

[9]

Zhao, C. X.; Chen, Z. P.; Xu, J. S.; Liu, Q. Q.; Xu, H.; Tang, H.; Li, G. S.; Jiang, Y.; Qu, F. Q.; Lin, Z. X. et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B 2019, 256, 117867.

[10]

Zhou, M.; Yang, P. J.; Yuan, R. S.; Asiri, A. M.; Wakeel, M.; Wang, X. C. Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols. ChemSusChem 2017, 10, 4451–4456.

[11]

Pahari, S. K.; Doong, R. A. Few-layered phosphorene-graphitic carbon nitride nanoheterostructure as a metal-free photocatalyst for aerobic oxidation of benzyl alcohol and toluene. ACS Sustainable Chem. Eng. 2020, 8, 13342–13351.

[12]

Xia, J. W.; Karjule, N.; Mondal, B.; Qin, J. N.; Volokh, M.; Xing, L. D.; Shalom, M. Design of melem-based supramolecular assemblies for the synthesis of polymeric carbon nitrides with enhanced photocatalytic activity. J. Mater. Chem. A 2021, 9, 17855–17864.

[13]

Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging chemical functionalization of g-C3N4: Covalent/noncovalent modifications and applications. ACS Nano 2020, 14, 12390–12469.

[14]

Barrio, J.; Shalom, M. Rational design of carbon nitride materials by supramolecular preorganization of monomers. ChemCatChem 2018, 10, 5573–5586.

[15]

Liang, Q. H.; Shao, B. B.; Tong, S. H.; Liu, Z. F.; Tang, L.; Liu, Y.; Cheng, M.; He, Q. Y.; Wu, T.; Pan, Y. et al. Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chem. Eng. J. 2021, 405, 126951.

[16]

Mo, Z.; Zhu, X. W.; Jiang, Z. F.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; She, Y. B.; Lei, Y. C.; Yuan, S. Q. et al. Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Appl. Catal. B. 2019, 256, 117854.

[17]

Schwarzer, A.; Saplinova, T.; Kroke, E. Tri-s-triazines (s-heptazines) From a “mystery molecule” to industrially relevant carbon nitride materials. Coord. Chem. Rev. 2013, 257, 2032–2062.

[18]

Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.

[19]

Xia, J. W.; Mark, G.; Volokh, M.; Fang, Y. X.; Chen, H. Q.; Wang, X. C.; Shalom, M. Supramolecular organization of melem for the synthesis of photoactive porous carbon nitride rods. Nanoscale 2021, 13, 19511–19517.

[20]

Sattler, A.; Pagano, S.; Zeuner, M.; Zurawski, A.; Gunzelmann, D.; Senker, J.; Müller-Buschbaum, K.; Schnick, W. Melamine-melem adduct phases: Investigating the thermal condensation of melamine. Chem.—Eur. J. 2009, 15, 13161–13170.

[21]

Sattler, A.; Schnick, W. Melemium hydrogensulfate H3C6N7(NH2)3(HSO4)3The first triple protonation of melem. Z. Anorg. Allg. Chem. 2010, 636, 2589–2594.

[22]

Xia, J. W.; Karjule, N.; Abisdris, L.; Volokh, M.; Shalom, M. Controllable synthesis of carbon nitride films with type-II heterojunction for efficient photoelectrochemical cells. Chem. Mater. 2020, 32, 5845–5853.

[23]

Bellamkonda, S.; Shanmugam, R.; Gangavarapu, R. R. Extending the π-electron conjugation in 2D planar graphitic carbon nitride: Efficient charge separation for overall water splitting. J. Mater. Chem. A 2019, 7, 3757–3771.

[24]

Wu, K.; Chen, D. D.; Lu, S. Y.; Fang, J. Z.; Zhu, X. M.; Yang, F.; Pan, T.; Fang, Z. Q. Supramolecular self-assembly synthesis of noble-metal-free (C, Ce) co-doped g-C3N4 with porous structure for highly efficient photocatalytic degradation of organic pollutants. J. Hazard. Mater. 2020, 382, 121027.

[25]

Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385–2389.

[26]

Guo, F. S.; Hu, B.; Yang, C.; Zhang, J. S.; Hou, Y. D.; Wang, X. C. On-surface polymerization of in-plane highly ordered carbon nitride nanosheets toward photocatalytic mineralization of mercaptan gas. Adv. Mater. 2021, 33, 2101466.

[27]

Sun, J. W.; Yao, F. L.; Dai, L. M.; Deng, J. Y.; Zhao, H. A.; Zhang, L. T.; Huang, Y.; Zou, Z. H.; Fu, Y. S.; Zhu, J. W. Task-specific synthesis of 3D porous carbon nitrides from the cycloaddition reaction and sequential self-assembly strategy toward photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 40433–40442.

[28]

Liu, Q.; Chen, C. C.; Yuan, K. J.; Sewell, C. D.; Zhang, Z. G.; Fang, X. M.; Lin, Z. Q. Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy 2020, 77, 105104.

[29]

Pan, Z. M.; Niu, P. P.; Liu, M. H.; Zhang, G. G.; Zhu, Z. H. Y.; Wang, X. C. Molecular junctions on polymeric carbon nitrides with enhanced photocatalytic performance. ChemSusChem 2020, 13, 888–892.

[30]

Huang, Z. J.; Yan, F. W.; Yuan, G. Q. Ultrasound-assisted fabrication of hierarchical rodlike graphitic carbon nitride with fewer defects and enhanced visible-light photocatalytic activity. ACS Sustainable Chem. Eng. 2018, 6, 3187–3195.

[31]

Mo, Z.; Xu, H.; Chen, Z. G.; She, X. J.; Song, Y. H.; Wu, J. J.; Yan, P. C.; Xu, L.; Lei, Y. C.; Yuan, S. Q. et al. Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B 2018, 225, 154–161.

[32]

Wang, C. L.; Liu, G. G.; Song, K.; Wang, X. Q.; Wang, H.; Zhao, N. Q.; He, F. Three-dimensional hierarchical porous carbon/graphitic carbon nitride composites for efficient photocatalytic hydrogen production. ChemCatChem 2019, 11, 6364–6371.

[33]

Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L.; Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem., Int. Ed. 2019, 58, 14549–14555.

[34]

Tong, Z. M.; Huang, L.; Liu, H. P.; Lei, W.; Zhang, H. J.; Zhang, S. W.; Jia, Q. L. Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 2021, 31, 2010455.

[35]

Huang, J. N.; Wang, H. J.; Yu, H.; Zhang, Q.; Cao, Y. H.; Peng, F. Oxygen doping in graphitic carbon nitride for enhanced photocatalytic hydrogen evolution. ChemSusChem 2020, 13, 5041–5049.

[36]

Zhang, G. G.; Li, G. S.; Heil, T.; Zafeiratos, S.; Lai, F. L.; Savateev, A.; Antonietti, M.; Wang, X. C. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 3433–3437.

[37]

Zhang, G. G.; Lin, L. H.; Li, G. S.; Zhang, Y. F.; Savateev, A.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Ionothermal synthesis of triazine-heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water”. Angew. Chem., Int. Ed. 2018, 57, 9372–9376.

[38]

Zhang, J. H.; Wei, M. J.; Wei, Z. W.; Pan, M.; Su, C. Y. Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution. ACS Appl. Nano Mater. 2020, 3, 1010–1018.

[39]

Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

[40]

Bohm, S.; Exner, O. Interaction of two functional groups through the benzene ring: Theory and experiment. J. Comput. Chem. 2009, 30, 1069–1074.

[41]

Zhou, M.; Yang, P. J.; Wang, S. B.; Luo, Z. S.; Huang, C. J.; Wang, X. C. Structure-mediated charge separation in boron carbon nitride for enhanced photocatalytic oxidation of alcohol. ChemSusChem 2018, 11, 3949–3955.

[42]

Karjule, N.; Phatake, R.; Volokh, M.; Hod, I.; Shalom, M. Solution-processable carbon nitride polymers for photoelectrochemical applications. Small Methods 2019, 3, 1900401.

[43]

Gu, Q.; Gong, X. Z.; Jia, Q. H.; Liu, J. N.; Gao, Z. W.; Wang, X. X.; Long, J. L.; Xue, C. Compact carbon nitride based copolymer films with controllable thickness for photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 19062–19071.

[44]

Teng, Z. Y.; Cai, W. A.; Liu, S. X.; Wang, C. Y.; Zhang, Q. T.; Su, C. L.; Ohno, T. Bandgap engineering of polymetric carbon nitride copolymerized by 2,5,8-triamino-tri-s-triazine (melem) and barbituric acid for efficient nonsacrificial photocatalytic H2O2 production. Appl. Catal. B 2020, 271, 118917.

Nano Research
Pages 10148-10157
Cite this article:
Xia J, Karjule N, Mark G, et al. Aromatic alcohols oxidation and hydrogen evolution over π-electron conjugated porous carbon nitride rods. Nano Research, 2022, 15(12): 10148-10157. https://doi.org/10.1007/s12274-022-4717-4
Topics:
Part of a topical collection:

1375

Views

18

Crossref

14

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 07 May 2022
Revised: 11 June 2022
Accepted: 29 June 2022
Published: 28 July 2022
© Tsinghua University Press 2022
Return