Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Spatially uniform high-temperature superconducting films are highly desirable for exploring novel properties and popularizing applications. To improve the uniformity, we fabricate monolayer FeSexTe1−x (0 < x ≤ 1) films on SrTiO3(001) by topotactic reaction of monolayer FeTe films with selenium. Using in situ low-temperature scanning tunneling microscopy/spectroscopy, we demonstrate atomic-level uniformity of element distribution and well-defined superconducting gaps of ~ 15 meV in FeSexTe1−x films. In particular, the monolayer FeSe films exhibit fewer line defects and higher superfluid density as evidenced by sharper coherence peaks than those prepared by the co-evaporation method. Our results provide a promising way to optimize sample quality and lay a foundation for studying new physics and drawing reliable conclusions.
Shi, X.; Han, Z. Q.; Richard, P.; Wu, X. X.; Peng, X. L.; Qian, T.; Wang, S. C.; Hu, J. P.; Sun, Y. J.; Ding, H. FeTe1−xSex monolayer films: Towards the realization of high-temperature connate topological superconductivity. Sci. Bull. 2017, 62, 503–507.
Peng, X. L.; Li, Y.; Wu, X. X.; Deng, H. B.; Shi, X.; Fan, W. H.; Li, M.; Huang, Y. B.; Qian, T.; Richard, P. et al. Observation of topological transition in high-Tc superconducting monolayer FeTe1−xSex films on SrTiO3(001). Phys. Rev. B 2019, 100, 155134.
Chen, C.; Jiang, K.; Zhang, Y.; Liu, C. F.; Liu, Y.; Wang, Z. Q.; Wang, J. Atomic line defects and zero-energy end states in monolayer Fe(Te, Se) high-temperature superconductors. Nat. Phys. 2020, 16, 536–540.
Liu, C. F.; Chen, C.; Liu, X. Q.; Wang, Z. Q.; Liu, Y.; Ye, S. S.; Wang, Z. Q.; Hu, J. P.; Wang, J. Zero-energy bound states in the high-temperature superconductors at the two-dimensional limit. Sci. Adv. 2020, 6, eaax7547.
Wang, Q. Y.; Li, Z.; Zhang, W. H.; Zhang, Z. C.; Zhang, J. S.; Li, W.; Ding, H.; Ou, Y. B.; Deng, P.; Chang, K. et al. Interface-induced high-temperature superconductivity in single unit-cell fese films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402.
Zhang, W. H.; Li, Z.; Li, F. S.; Zhang, H. M.; Peng, J. P.; Tang, C. J.; Wang, Q. Y.; He, K.; Chen, X.; Wang, L. L. et al. Interface charge doping effects on superconductivity of single-unit-cell FeSe films on SrTiO3 substrates. Phys. Rev. B 2014, 89, 060506(R).
Chen, C.; Liu, C. F.; Liu, Y.; Wang, J. Bosonic mode and impurity-scattering in monolayer Fe(Te, Se) high-temperature superconductors. Nano Lett. 2020, 20, 2056–2061.
Tan, S. Y.; Zhang, Y.; Xia, M.; Ye, Z. R.; Chen, F.; Xie, X.; Peng, R.; Xu, D. F.; Fan, Q.; Xu, H. C. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640.
Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Johnston, S.; Cui, Y. T.; Li, W.; Yi, M.; Liu, Z. K.; Hashimoto, M.; Zhang, Y. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 2014, 515, 245–248.
Xu, Y.; Rong, H. T.; Wang, Q. Y.; Wu, D. S.; Hu, Y.; Cai, Y. Q.; Gao, Q.; Yan, H. T.; Li, C.; Yin, C. H. et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films. Nat. Commun. 2021, 12, 2840.
Zhang, W. H.; Sun, Y.; Zhang, J. S.; Li, F. S.; Guo, M. H.; Zhao, Y. F.; Zhang, H. M.; Peng, J. P.; Xing, Y.; Wang, H. C. et al. Direct observation of high-temperature superconductivity in one-unit-cell fese films. Chin. Phys. Lett. 2014, 31, 017401.
Wang, Q. Y.; Zhang, W. H.; Chen, W. W.; Xing, Y.; Sun, Y.; Wang, Z. Q.; Mei, J. W.; Wang, Z. F.; Wang, L. L.; Ma, X. C. et al. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films. 2D Mater. 2017, 4, 034004.
Cui, W. Q.; Zheng, C.; Zhang, L. G.; Kang, Z. X.; Li, L. X.; Cai, X. Q.; Zhao, D. P.; Hu, X. P.; Chen, X.; Wang, Y. L. et al. An in situ electrical transport measurement system under ultra-high vacuum. Rev. Sci. Instrum. 2020, 91, 063902.
Faeth, B. D.; Yang, S. L.; Kawasaki, J. K.; Nelson, J. N.; Mishra, P.; Parzyck, C. T.; Li, C.; Schlom, D. G.; Shen, K. M. Incoherent cooper pairing and pseudogap behavior in single-layer FeSe/SrTiO3. Phys. Rev. X 2021, 11, 021054.
Li, F. S.; Ding, H.; Tang, C. J.; Peng, J. P.; Zhang, Q. H.; Zhang, W. H.; Zhou, G. Y.; Zhang, D.; Song, C. L.; He, K. et al. Interface-enhanced high-temperature superconductivity in single-unit-cell FeTe1 − xSex films on SrTiO3. Phys. Rev. B 2015, 91, 220503(R).
Gong, G. M.; Yang, H. H.; Zhang, Q. H.; Ding, C.; Zhou, J. S.; Chen, Y. J.; Meng, F. Q.; Zhang, Z. Y.; Dong, W. F.; Zheng, F. W. et al. Oxygen vacancy modulated superconductivity in monolayer FeSe on SrTiO3-δ. Phys. Rev. B 2019, 100, 224504.
Tanaka, T.; Akiyama, K.; Ichinokura, S.; Shimizu, R.; Hitosugi, T.; Hirahara, T. Superconducting dome revealed by surface structure dependence in single unit cell FeSe on SrTiO3(001). Phys. Rev. B 2020, 101, 205421.
Si, W.; Tanaka, T.; Ichinokura, S.; Hirahara, T. Substrate-induced broken C4 symmetry and gap variation in superconducting single-layer FeSe/SrTiO3-
Li, Z.; Peng, J. P.; Zhang, H. M.; Zhang, W. H.; Ding, H.; Deng, P.; Chang, K.; Song, C. L.; Ji, S. H.; Wang, L. L. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study. J. Phys.: Condens. Matter 2014, 26, 265002.
Jiao, X. T.; Gong, G. M.; Zhang, Z. Y.; Dong, W. F.; Ding, C.; Pan, M. H.; Wang, L. L.; Xue, Q. K. Post-growth Fe deposition on the superconductivity of monolayer FeSe films on SrTiO3−δ. Phys. Rev. Mater. 2022, 6, 064803.
Fan, Q.; Zhang, W. H.; Liu, X.; Yan, Y. J.; Ren, M. Q.; Peng, R.; Xu, H. C.; Xie, B. P.; Hu, J. P.; Zhang, T. et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy. Nat. Phys. 2015, 11, 946–952.
Zhang, H. M.; Ge, Z. Z.; Weinert, M.; Li, L. Sign changing pairing in single layer FeSe/SrTiO3 revealed by nonmagnetic impurity bound states. Commun. Phys. 2020, 3, 75.
He, X. B.; Li, G. R.; Zhang, J. D.; Karki, A. B.; Jin, R. Y.; Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Mandrus, D.; Plummer, E. W. Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy.
Bao, W.; Qiu, Y.; Huang, Q.; Green, M. A.; Zajdel, P.; Fitzsimmons, M. R.; Zhernenkov, M.; Chang, S.; Fang, M.; Qian, B. et al. Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te, Se) superconductors. Phys. Rev. Lett. 2009, 102, 247001.
Liu, T. J.; Hu, J.; Qian, B.; Fobes, D.; Mao, Z. Q.; Bao, W.; Reehuis, M.; Kimber, S. A. J.; Prokeš, K.; Matas, S. et al. From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1 − xSex. Nat. Mater. 2010, 9, 718–720.
Okamoto, H. The FeSe (iron-selenium) system. J. Phase Equilib. 1991, 12, 383–389.
Rodriguez, E. E.; Stock, C.; Zajdel, P.; Krycka, K. L.; Majkrzak, C. F.; Zavalij, P.; Green, M. A. Magnetic-crystallographic phase diagram of the superconducting parent compound Fe1+xTe. Phys. Rev. B 2011, 84, 064403.
Li, F. S.; Zhang, Q. H.; Tang, C. J.; Liu, C.; Shi, J. N.; Nie, C. N.; Zhou, G. Y.; Li, Z.; Zhang, W. H.; Song, C. L. et al. Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Mater. 2016, 3, 024002.
Tantardini, C.; Oganov, A. R. Thermochemical electronegativities of the elements. Nat. Commun. 2021, 12, 2087.
Zhang, Z. M.; Cai, M.; Li, R.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Ye, Z. J.; Xu, G.; Fu, Y. S.; Zhang, W. H. Controllable synthesis and electronic structure characterization of multiple phases of iron telluride thin films. Phys. Rev. Mater. 2020, 4, 125003.
Hanaguri, T.; Niitaka, S.; Kuroki, K.; Takagi, H. Unconventional s-wave superconductivity in Fe(Se, Te). Science 2010, 328, 474–476.
Lin, W. Z.; Li, Q.; Sales, B. C.; Jesse, S.; Sefat, A. S.; Kalinin, S. V.; Pan, M. H. Direct probe of interplay between local structure and superconductivity in FeTe0.55Se0.45. ACS Nano 2013, 7, 2634–2641.
Zhao, H.; Li, H.; Dong, L. Y.; Xu, B. J.; Schneeloch, J.; Zhong, R. D.; Fang, M. H.; Gu, G. D.; Harter, J.; Wilson, S. D. et al. Nematic transition and nanoscale suppression of superconductivity in Fe(Te, Se). Nat. Phys. 2021, 17, 903–908.
Mohanta, N.; Taraphder, A. Oxygen vacancy clustering and pseudogap behaviour at the LaAlO3/SrTiO3 interface. J. Phys.:Condens. Matter 2014, 26, 215703.
Wei, Z.; Qin, S.; Ding, C.; Hu, J.; Sun, Y.; Wang, L.; Xue, Q. K. Identifying s-wave pairing symmetry in single-layer FeSe from topologically trivial edge states. arXiv 2022, 2207, 13889.
Ruan, W.; Li, X. T.; Hu, C.; Hao, Z. Q.; Li, H. W.; Cai, P.; Zhou, X. J.; Lee, D. H.; Wang, Y. Y. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 2018, 14, 1178–1182.
Cho, D.; Bastiaans, K. M.; Chatzopoulos, D.; Gu, G. D.; Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 2019, 571, 541–545.
Ge, Z. Z.; Yan, C. H.; Zhang, H. M.; Agterberg, D.; Weinert, M.; Li, L. Evidence for d-wave superconductivity in single layer FeSe/SrTiO3 probed by quasiparticle scattering off step edges. Nano Lett. 2019, 19, 2497–2502.
Zhang, H. M.; Zhang, D.; Lu, X. W.; Liu, C.; Zhou, G. Y.; Ma, X. C.; Wang, L. L.; Jiang, P.; Xue, Q. K.; Bao, X. H. Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO3. Nat. Commun. 2017, 8, 214.
He, S. L.; He, J. F.; Zhang, W. H.; Zhao, L.; Liu, D. F.; Liu, X.; Mou, D. X.; Ou, Y. B.; Wang, Q. Y.; Li, Z. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 2013, 12, 605–610.