Graphical Abstract

Metal nanoclusters (NCs) with precise structure and ultrasmall size have attracted great interests in catalysis. However, the poor stability has limited its large-scale use. Herein, we proposed the “covalence bridge” strategy to effectively connect atomically precise metal NCs and metal-organic frameworks. Benefiting from the covalent linkage, the synthesized UiO-66-NH2-Au25(L-Cys)18 showed outstanding stability after 16 h photocatalysis. Moreover, the covalence bridge created a strong metal-support interaction between the two components and provided an effective charge transport channel and thereby enhanced photocatalytic activity. UiO-66-NH2-Au25(L-Cys)18 displayed an exceptional photocatalytic H2 production rate, which is 21 and 90 times higher than that of UiO-66-NH2/Au25(PET)18 (made by physically combination) and bare UiO-66-NH2, respectively. Thermodynamic and kinetic studies demonstrated that UiO-66-NH2-Au25(L-Cys)18 exhibited higher charge transfer efficiency, lower overpotential of water reduction and activation energy barrier compared with its counterparts.
Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.
Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.
Dong, C. Y.; Li, Y. L.; Cheng, D. Y.; Zhang, M. T.; Liu, J. J.; Wang, Y. G.; Xiao, D. Q.; Ma, D. Supported metal clusters: Fabrication and application in heterogeneous catalysis. ACS Catal. 2020, 10, 11011–11045.
Deng, Y.; Zhang, Z.; Du, P. Y.; Ning, X. M.; Wang, Y.; Zhang, D. X.; Liu, J.; Zhang, S. T.; Lu, X. Q. Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 6082–6089.
Jiang, Y. L.; Yu, Y.; Zhang, X.; Weinert, M.; Song, X. L.; Ai, J.; Han, L.; Fei, H. H. N-heterocyclic carbene-stabilized ultrasmall gold nanoclusters in a metal-organic framework for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 17388–17393.
Yun, Y. P.; Sheng, H. T.; Bao, K.; Xu, L.; Zhang, Y.; Astruc, D.; Zhu, M. Z. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67. J. Am. Chem. Soc. 2020, 142, 4126–4130.
Luo, L. S.; Jin, R. C. Atomically precise metal nanoclusters meet metal-organic frameworks. iScience 2021, 24, 103206.
Luo, Y. C.; Fan, S. Y.; Yu, W. Q.; Wu, Z. L.; Cullen, D. A.; Liang, C. L.; Shi, J. Y.; Su, C. Y. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: A facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 2018, 30, 1704576.
Ji, S. F.; Chen, Y. J.; Zhao, S.; Chen, W. X; Shi, L. J.; Wang, Y.; Dong, J. C.; Li, Z.; Li, F. W.; Chen, C. et al. Atomically dispersed ruthenium species inside metal-organic frameworks: Combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem., Int. Ed. 2019, 58, 4271–4275.
Liu, L. L.; Song, Y. B.; Chong, H. B.; Yang, S.; Xiang, J.; Jin, S.; Kang, X.; Zhang, J.; Yu, H. Z.; Zhu, M. Z. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale 2016, 8, 1407–1412.
Kratzl, K.; Kratky, T.; Günther, S.; Tomanec, O.; Zbořil, R.; Michalička, J.; Macak, J. M.; Cokoja, M.; Fischer, R. A. Generation and stabilization of small platinum clusters Pt12±x inside a metal-organic framework. J. Am. Chem. Soc. 2019, 141, 13962–13969.
Sun, L. L.; Yun, Y. P.; Sheng, H. T.; Du, Y. X.; Ding, Y. M.; Wu, P.; Li, P.; Zhu, M. Z. Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A 2018, 6, 15371–15376.
Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623–4627.
Sun, K.; Liu, M.; Pei, J. Z.; Li, D. D.; Ding, C. M.; Wu, K. F.; Jiang, H. L. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 22749–22755.
Zhang, J. Y.; Li, Z. M.; Huang, J. H.; Liu, C.; Hong, F.; Zheng, K.; Li, G. Size dependence of gold clusters with precise numbers of atoms in aerobic oxidation of d-glucose. Nanoscale 2017, 9, 16879–16886.
Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.
Sarker, M.; Song, J. Y.; Jhung, S. H. Carboxylic-acid-functionalized UiO-66-NH2: A promising adsorbent for both aqueous- and non-aqueous-phase adsorptions. Chem. Eng. J. 2018, 331, 124–131.
Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.
Ding, L.; Shao, P. H.; Luo, Y.; Yin, X. C.; Yu, S. P.; Fang, L. L.; Yang, L. M.; Yang, J. K.; Luo, X. B. Functionalization of UiO-66-NH2 with rhodanine via amidation: Towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chem. Eng. J. 2020, 382, 123009.
Xu, H. Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H. L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.
Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.
Zhen, W. L.; Ma, J. T.; Lu, G. X. Small-sized Ni(1 1 1) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Appl. Catal. B Environ. 2016, 190, 12–25.
Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.