AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fast Zn2+ mobility enabled by sucrose modified Zn2+ solvation structure for dendrite-free aqueous zinc battery

Yufang Cao1,2,3,§Xiaohui Tang2,§Linge Li1,2Haifeng Tu1,2Yuzhen Hu1,2Yingying Yu2Shuang Cheng1,2Hongzhen Lin1,2Liwen Zhang2,3Jiangtao Di1,2,3( )Yongyi Zhang1,2,3( )Meinan Liu1,2,3( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China

§ Yufang Cao and Xiaohui Tang contributed equally to this work.

Show Author Information

Graphical Abstract

A simple sucrose modified aqueous electrolyte has been designed to regulate Zn2+ solvation environment for fastening Zn2+ mobility, and thus achieve dendrite-free zinc batteries.

Abstract

Aqueous zinc battery has been regarded as one of the most promising energy storage systems due to its low cost and environmental benignity. However, the safety concern on Zn anodes caused by uncontrolled Zn dendrite growth in aqueous electrolyte hinders their application. Herein, sucrose with multi-hydroxyl groups has been introduced into aqueous electrolyte to modify Zn2+ solvation environment and create a protection layer on Zn anode, thus effectively retarding the growth of zinc dendrites. Atomistic simulations and experiments confirm that sucrose molecules can enter into the solvation sheath of Zn2+, and the as-formed unique solvation structure enhances the mobility of Zn2+. Such fast Zn2+ kinetics in sucrose-modified electrolyte can successfully suppress the dendrite growth. With this sucrose-modified aqueous electrolyte, Zn/Zn symmetric cells present more stable cycle performance than those using pure aqueous electrolyte; Zn/C cells also deliver an impressive higher energy density of 129.7 Wh·kg−1 and improved stability, suggesting a great potential application of sucrose-modified electrolytes for future Zn batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_4726_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Yin, J.; Zhang, W. L.; Wang, W. X.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705.

[2]

Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

[3]

Han, C. P.; Zhang, T. F.; Li, J. Q.; Li, B. H.; Lin, Z. Q. Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 2020, 77, 105165.

[4]

Chen, H.; Shen, Z. H.; Pan, Z. H.; Kou, Z. K.; Liu, X. M.; Zhang, H.; Gu, Q. L.; Guan, C.; Wang, J. Hierarchical micro-nano sheet arrays of nickel-cobalt double hydroxides for high-rate Ni-Zn batteries. Adv. Sci. 2019, 6, 1802002.

[5]

Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.

[6]

Xiong, T.; Yu, Z. G.; Wu, H. J.; Du, Y. H.; Xie, Q. D.; Chen, J. S.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J. M. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 2019, 9, 1803815.

[7]

Chen, D.; Lu, M. J.; Cai, D.; Yang, H.; Han, W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 712–726.

[8]

Cao, Q. H.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J. J.; Yang, J. Y.; Cai, D. M.; Pan, Z. H. et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2103922.

[9]

Hao, J. N.; Li, X. L.; Zeng, X. H.; Li, D.; Mao, J. F.; Guo, Z. P. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 2020, 13, 3917–3949.

[10]

Zhang, Y. J.; Chen, Z.; Qiu, H. Y.; Yang, W. H.; Zhao, Z. M.; Zhao, J. W.; Cui, G. L. Pursuit of reversible Zn electrochemistry: A time-honored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4.

[11]

Li, Q.; Zhao, Y. W.; Mo, F. N.; Wang, D. H.; Yang, Q.; Huang, Z. D.; Liang, G. J.; Chen, A.; Zhi, C. Y. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2020, 2, e12035.

[12]

Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B. G.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.

[13]

Yan, J. P.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Du, W. C.; Li, C. C. High-voltage zinc-ion batteries: Design strategies and challenges. Adv. Funct. Mater. 2021, 31, 2010213.

[14]

Yuan, X. H.; Ma, F. X.; Zuo, L. Q.; Wang, J.; Yu, N. F.; Chen, Y. H.; Zhu, Y. S.; Huang, Q. H.; Holze, R.; Wu, Y. P. et al. Latest advances in high-voltage and high-energy-density aqueous rechargeable batteries. Electrochem. Energy Rev. 2021, 4, 1–34.

[15]

Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

[16]

Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427.

[17]

Cheng, H. R.; Sun, Q. J.; Li, L. L.; Zou, Y. G.; Wang, Y. Q.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 2022, 7, 490–513.

[18]

Feng, Y.; Zhou, L. M.; Ma, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 2022, 15, 1711–1759.

[19]

Yang, Y.; Yao, S. Y.; Liang, Z. W.; Wen, Y. C.; Liu, Z. B.; Wu, Y. W.; Liu, J.; Zhu, M. A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS Energy Lett. 2022, 7, 885–896.

[20]

Zeng, L. Y.; Zhou, T.; Xu, X. J.; Li, F. K.; Shen, J. D.; Zhang, D. C.; Liu, J.; Zhu, M. General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Sci. China Mater. 2022, 65, 337–348.

[21]

Zhou, T.; Shen, J. D.; Wang, Z. S.; Liu, J.; Hu, R. Z.; Ouyang, L. Z.; Feng, Y. Z.; Liu, H.; Yu, Y.; Zhu, M. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv. Funct. Mater. 2020, 30, 1909159.

[22]

Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.

[23]

Zhang, C.; Shin, W.; Zhu, L. D.; Chen, C.; Neuefeind, J. C.; Xu, Y. K.; Allec, S. I.; Liu, C.; Wei, Z. X.; Daniyar, A. et al. The electrolyte comprising more robust water and superhalides transforms Zn-metal anode reversibly and dendrite-free. Carbon Energy 2021, 3, 339–348.

[24]

Zhang, L.; Miao, L. C.; Xin, W. L.; Peng, H. L.; Yan, Z. C.; Zhu, Z. Q. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Mater. 2022, 44, 408–415.

[25]

Huang, C.; Zhao, X.; Liu, S.; Hao, Y. S.; Tang, Q. L.; Hu, A. P.; Liu, Z. X.; Chen, X. H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021, 33, 2100445.

[26]

Qin, R. Z.; Wang, Y. T.; Zhang, M. Z.; Wang, Y.; Ding, S. X.; Song, A. Y.; Yi, H. C.; Yang, L. Y.; Song, Y. L.; Cui, Y. H. et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 2021, 80, 105478.

[27]

Li, T. C.; Lim, Y.; Li, X. L.; Luo, S. Z.; Lin, C. J.; Fang, D. L.; Xia, S. W.; Wang, Y.; Yang, H. Y. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy Mater. 2022, 12, 2103231.

[28]

Zhang, S. J.; Hao, J. N.; Luo, D.; Zhang, P. F.; Zhang, B. K.; Davey, K.; Lin, Z.; Qiao, S. Z. Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 2021, 11, 2102010.

[29]

Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

[30]

Feng, D. D.; Cao, F. Q.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 2021, 17, 2103195.

[31]

Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

[32]

Wang, D. H.; Li, Q.; Zhao, Y. W.; Hong, H.; Li, H. F.; Huang, Z. D.; Liang, G. J.; Yang, Q.; Zhi, C. Y. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 2022, 12, 2102707.

[33]

Mo, F. N.; Cui, M. W.; He, N.; Chen, L. N.; Fei, J. B.; Ma, Z. Y.; Yu, S. Z.; Wei, J.; Huang, Y. Recent progress and perspectives on advanced flexible Zn-based batteries with hydrogel electrolytes. Mater. Res. Lett. 2022, 10, 501–520.

[34]

Kraemer, D.; Cowan, M. L.; Paarmann, A.; Huse, N.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D. Temperature dependence of the two-dimensional infrared spectrum of liquid H2O. Proc. Natl. Acad. Sci. USA 2008, 105, 437–442.

[35]

Wang, N.; Yang, Y.; Qiu, X.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Stabilized rechargeable aqueous zinc batteries using ethylene glycol as water blocker. ChemSusChem 2020, 13, 5556–5564.

[36]

Yan, C.; Li, H. R.; Chen, X.; Zhang, X. Q.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Zhang, Q. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429.

[37]

Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X. L.; Gao, T.; Eidson, N.; Liang, Y. J.; Sun, W. et al. Hybrid aqueous/non-aqueous electrolyte for safe and high-energy Li-ion batteries. Joule 2018, 2, 927–937.

[38]

Yang, C. Y.; Chen, J.; Qing, T. T.; Fan, X. L.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A.; Eidson, N. et al. 4.0 V aqueous Li-ion batteries. Joule 2017, 1, 122–132.

[39]

Xi, M. R.; Liu, Z. J.; Ding, J.; Cheng, W. H.; Jia, D. Z.; Lin, H. Saccharin anion acts as a “traffic assistant” of Zn2+ to achieve a long-life and dendritic-free zinc plate anode. ACS Appl. Mater. Interfaces 2021, 13, 29631–29640.

[40]
Yang, Z. F.; Lv, C. N.; Li, W. B.; Wu, T. Q.; Zhang, Q.; Tang, Y. G.; Shao, M. H.; Wang, H. Y. Revealing the two-dimensional surface diffusion mechanism for zinc dendrite formation on zinc anode. Small, in press, https://doi.org/10.1002/smll.202104148.
[41]

Di, S. L.; Nie, X. Y.; Ma, G. Q.; Yuan, W. T.; Wang, Y. Y.; Liu, Y. C.; Shen, S. G.; Zhang, N. Zinc anode stabilized by an organic–inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021, 43, 375–382.

[42]

Wang, S. N.; Wang, Z. Y.; Yin, Y. B.; Li, T. Y.; Chang, N. N.; Fan, F. T.; Zhang, H. M.; Li, X. F. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy Environ. Sci. 2021, 14, 4077–4084.

[43]

Wang, J. W.; Huang, Y.; Liu, B. B.; Li, Z. X.; Zhang, J. Y.; Yang, G. S.; Hiralal, P.; Jin, S. Y.; Zhou, H. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 2021, 41, 599–605.

[44]

Zhao, Z. M.; Zhao, J. W.; Hu, Z. L.; Li, J. D.; Li, J. J.; Zhang, Y. J.; Wang, C.; Cui, G. L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949.

[45]

Guo, X. X.; Zhang, Z. Y.; Li, J. W.; Luo, N. N.; Chai, G. L.; Miller, T. S.; Lai, F. L.; Shearing, P.; Brett, D. J. L.; Han, D. L. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021, 6, 395–403.

[46]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[47]

Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W. et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.

[48]

Cao, L. S.; Li, D.; Deng, T.; Li, Q.; Wang, C. S. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 19292–19296.

[49]

Han, D. L.; Wu, S. C.; Zhang, S. W.; Deng, Y. Q.; Cui, C. J.; Zhang, L. N.; Long, Y.; Li, H.; Tao, Y.; Weng, Z. et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, 2001736.

[50]
Li, Q. ; Chen, A. ; Wang, D. H. ; Pei, Z. X. ; Zhi, C. Y. ‘‘Soft shorts’’ hidden in zinc metal anode research. Joule 2022, 6, 273–279.
[51]

Yu, P. F.; Zeng, Y.; Zeng, Y. X.; Dong, H. W.; Hu, H.; Liu, Y. L.; Zheng, M. T.; Xiao, Y.; Lu, X. H.; Liang, Y. R. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta 2019, 327, 134999.

[52]

Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96–102.

[53]

Lu, Y. Y.; Li, Z. W.; Bai, Z. Y.; Mi, H. Y.; Ji, C. C.; Pang, H.; Yu, C.; Qiu, J. S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132.

[54]

He, L.; Liu, Y.; Li, C. Y.; Yang, D. Z.; Wang, W. G.; Yan, W. Q.; Zhou, W. B.; Wu, Z. X.; Wang, L. L.; Huang, Q. H. et al. A low-cost Zn-based aqueous supercapacitor with high energy density. ACS Appl. Energy Mater. 2019, 2, 5835–5842.

[55]

Zhu, Y. C.; Ye, X. K.; Jiang, H. D.; Xia, J. X.; Yue, Z. Y.; Wang, L. H.; Wan, Z. Q.; Jia, C. Y.; Yao, X. J. Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. J. Power Sources 2020, 453, 227851.

[56]

Deng, X. Y.; Li, J. J.; Shan, Z.; Sha, J. W.; Ma, L. Y.; Zhao, N. Q. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 2020, 8, 11617–11625.

[57]

Cao, Y. F.; Tang, X. H.; Liu, M. N.; Zhang, Y. Y.; Yang, T. T.; Yang, Z. P.; Yu, Y. Y.; Li, Y.; Di, J. T.; Li, Q. W. Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chem. Eng. J. 2022, 431, 133241.

Nano Research
Pages 3839-3846
Cite this article:
Cao Y, Tang X, Li L, et al. Fast Zn2+ mobility enabled by sucrose modified Zn2+ solvation structure for dendrite-free aqueous zinc battery. Nano Research, 2023, 16(3): 3839-3846. https://doi.org/10.1007/s12274-022-4726-3
Topics:
Part of a topical collection:

1280

Views

33

Crossref

33

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 19 May 2022
Revised: 28 June 2022
Accepted: 30 June 2022
Published: 28 July 2022
© Tsinghua University Press 2022
Return