AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Chemical-vapor-deposition-grown 2D transition metal dichalcogenides: A generalist model for engineering electrocatalytic hydrogen evolution

Yang ZhaoJiazhao HuangJianqiang ChenYouwen Liu( )Tianyou Zhai
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Show Author Information

Graphical Abstract

Chemical-vapor-deposition-grown two-dimensional (2D) transition metal dichalcogenides exhibit clean surface and manageable features due to the highly controllable synthesis process, which makes them suitable for engineering electrocatalytic hydrogen evolution.

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have proved to possess exceptional catalytic performance for hydrogen evolution and are considered to be an appropriate substitute for commercial Pt-based catalysts. Experimentally, chemical vapor deposition (CVD) is an extremely important technique for acquiring controllable and high-purity TMDs for electrocatalysis and modern electronic devices. Recently, researchers have made significant achievements in synthesizing TMDs used for electrocatalytic hydrogen evolution by CVD ranging from dynamic mechanism exploration to performance optimization. In this review, we present the recent progress based on electrocatalytic hydrogen evolution implemented by CVD-growth TMDs nanosheets and unveil the structural–activity correlation. Firstly, in synthesis, diverse factors covering precursor, substrate, temperature settings, and atmosphere will affect the quality and surface morphology of TMDs. Then, we present the current research status of the CVD-grown 2D TMDs for engineering electrocatalytic hydrogen evolution, including intrinsic performance exploring, morphology engineering, composition adjusting, phase engineering, and vertically-oriented structure constructing. Finally, the future prospects and challenges of CVD in 2D TMDs electrocatalysis are provided.

References

[1]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[2]

He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059.

[3]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[4]

Wen, Q. L.; Zhao, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small 2022, 18, 2104513.

[5]

Wen, Q. L.; Yang, K.; Huang, D. J.; Cheng, G.; Ai, X. M.; Liu, Y. W.; Fang, J. K.; Li, H. Q.; Yu, L.; Zhai, T. Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.

[6]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[7]

Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 2020, 30, 1909260.

[8]
Price pressures on metals. Nat. Catal. 2019, 2, 735.
[9]

Cai, J.; Javed, R.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22467–22487.

[10]

Chia, X. Y.; Pumera, M. Layered transition metal dichalcogenide electrochemistry: Journey across the periodic table. Chem. Soc. Rev. 2018, 47, 5602–5613.

[11]

Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

[12]

Fu, Q.; Han, J. C.; Wang, X. J.; Xu, P.; Yao, T.; Zhong, J.; Zhong, W. W.; Liu, S. W.; Gao, T. L.; Zhang, Z. H. et al. 2D transition metal dichalcogenides: Design, modulation, and challenges in electrocatalysis. Adv. Mater. 2021, 33, 1907818.

[13]

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

[14]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[15]

Yang, J.; Voiry, D.; Ahn, S. J.; Kang, D.; Kim, A. Y.; Chhowalla, M.; Shin, H. S. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angew. Chem. , Int. Ed. 2013, 52, 13751–13754.

[16]

Zhang, X. Y.; Ma, G. Q.; Wang, J. Hydrothermal synthesis of two-dimensional MoS2 and its applications. Tungsten 2019, 1, 59–79.

[17]

Zhen, C. L.; Zhang, B.; Zhou, Y. H.; Du, Y. C.; Xu, P. Hydrothermal synthesis of ternary MoS2xSe2(1−x) nanosheets for electrocatalytic hydrogen evolution. Inorg. Chem. Front. 2018, 5, 1386–1390.

[18]

Li, L.; Qin, Z. D.; Ries, L.; Hong, S.; Michel, T.; Yang, J.; Salameh, C.; Bechelany, M.; Miele, P.; Kaplan, D. et al. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 2019, 13, 6824–6834.

[19]

Kim, C.; Nguyen, T. P.; Van Le, Q.; Jeon, J. M.; Jang, H. W.; Kim, S. Y. Performances of liquid-exfoliated transition metal dichalcogenides as hole injection layers in organic light-emitting diodes. Adv. Funct. Mater. 2015, 25, 4512–4519.

[20]

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

[21]

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

[22]

Huo, C. X.; Yan, Z.; Song, X. F.; Zeng, H. B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008.

[23]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[24]

Hussain, S.; Patil, S. A.; Vikraman, D.; Mengal, N.; Liu, H. L.; Song, W.; An, K. S.; Jeong, S. H.; Kim, H. S.; Jung, J. Large area growth of MoTe2 films as high performance counter electrodes for dye-sensitized solar cells. Sci. Rep. 2018, 8, 29.

[25]

Kim, H. U.; Kanade, V.; Kim, M.; Kim, K. S.; An, B. S.; Seok, H.; Yoo, H.; Chaney, L. E.; Kim, S. I.; Yang, C. W. et al. Wafer-scale and low-temperature growth of 1T-WS2 film for efficient and stable hydrogen evolution reaction. Small 2020, 16, 1905000.

[26]

Kim, H. U.; Kim, M.; Seok, H.; Park, K. Y.; Moon, J. Y.; Park, J.; An, B. S.; Jung, H. J.; Dravid, V. P.; Whang, D. et al. Realization of wafer-scale 1T-MoS2 film for efficient hydrogen evolution reaction. ChemSusChem 2021, 14, 1344–1350.

[27]

Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.

[28]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[29]

Zhou, Y.; Zhang, J.; Song, E. H.; Lin, J. H.; Zhou, J. D.; Suenaga, K.; Zhou, W.; Liu, Z.; Liu, J. J.; Lou, J. et al. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun. 2020, 11, 2253.

[30]

Kang, M. K.; Lin, C. Q.; Yang, H.; Guo, Y. B.; Liu, L. X.; Xue, T. Y.; Liu, Y. W.; Gong, Y. J.; Zhao, Z. S.; Zhai, T. Y. et al. Proximity enhanced hydrogen evolution reactivity of substitutional doped monolayer WS2. ACS Appl. Mater. Interfaces 2021, 13, 19406–19413.

[31]

Huan, Y. H.; Shi, J. P.; Zou, X. L.; Gong, Y.; Zhang, Z. P.; Li, M. H.; Zhao, L. Y.; Xu, R. Z.; Jiang, S. L.; Zhou, X. B. et al. Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv. Mater. 2018, 30, 1705916.

[32]

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T'MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

[33]

Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. H.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res. 2018, 11, 1787–1797.

[34]

Tong, X. P.; Zhao, Y.; Zhuo, Z. W.; Yang, Z. H.; Wang, S. Z.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew. Chem. , Int. Ed. 2022, 61, e202112953.

[35]

Yang, J.; Mohmad, A. R.; Wang, Y.; Fullon, R.; Song, X. J.; Zhao, F.; Bozkurt, I.; Augustin, M.; Santos, E. J. G.; Shin, H. S. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 2019, 18, 1309–1314.

[36]

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

[37]

Li, W.; Huang, J. Q.; Han, B.; Xie, C. Y.; Huang, X. X.; Tian, K. S.; Zeng, Y.; Zhao, Z. J.; Gao, P.; Zhang, Y. F. et al. Molten-salt-assisted chemical vapor deposition process for substitutional doping of monolayer MoS2 and effectively altering the electronic structure and phononic properties. Adv. Sci. 2020, 7, 2001080.

[38]

Han, W.; Liu, K. L.; Yang, S. J.; Wang, F. K.; Su, J. W.; Jin, B.; Li, H. Q.; Zhai, T. Y. Salt-assisted chemical vapor deposition of two-dimensional materials. Sci. China Chem. 2019, 62, 1300–1311.

[39]

Zhu, L. J.; Yang, P. F.; Huan, Y. H.; Pan, S. Y.; Zhang, Z. Q.; Cui, F. F.; Shi, Y. P.; Jiang, S. L.; Xie, C. Y.; Hong, M. et al. Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Res. 2020, 13, 3098–3104.

[40]

Hu, D. K.; Zhao, T. Q.; Ping, X. F.; Zheng, H. S.; Xing, L.; Liu, X. Z.; Zheng, J. Y.; Sun, L. F.; Gu, L.; Tao, C. G. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem. , Int. Ed. 2019, 58, 6977–6981.

[41]

Okada, M.; Okada, N.; Chang, W. H.; Endo, T.; Ando, A.; Shimizu, T.; Kubo, T.; Miyata, Y.; Irisawa, T. Gas-source CVD growth of atomic layered WS2 from WF6 and H2S precursors with high grain size uniformity. Sci. Rep. 2019, 9, 17678.

[42]

Choi, J. H.; Ha, M. J.; Park, J. C.; Park, T. J.; Kim, W. H.; Lee, M. J.; Ahn, J. H. A strategy for wafer-scale crystalline MoS2 thin films with controlled morphology using pulsed metal-organic chemical vapor deposition at low temperature. Adv. Mater. Interfaces 2022, 9, 2101785.

[43]

Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

[44]

Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 2017, 29, 1702359.

[45]

Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

[46]

Ji, Q. Q.; Li, C.; Wang, J. L.; Niu, J. J.; Gong, Y.; Zhang, Z. P.; Fang, Q. Y.; Zhang, Y.; Shi, J. P.; Liao, L. et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett. 2017, 17, 4908–4916.

[47]

Lee, Y.; Ling, N.; Kim, D.; Zhao, M. L.; Eshete, Y. A.; Kim, E.; Cho, S.; Yang, H. Heterophase boundary for active hydrogen evolution in MoTe2. Adv. Funct. Mater. 2022, 32, 2105675.

[48]

Sun, Y. H.; Moe, Y. A.; Xu, Y. Y.; Sun, Y. F.; Wang, X. W.; Li, F. T.; Liu, K.; Wang, R. M. Evolution of local strain in Ag-deposited monolayer MoS2 modulated by interface interactions. Nanoscale 2019, 11, 22432–22439.

[49]

Zheng, B. J.; Wang, Z. G.; Qi, F.; Wang, X. Q.; Yu, B.; Zhang, W. L.; Chen, Y. F. CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates. Appl. Surf. Sci. 2018, 435, 563–567.

[50]

Fu, L.; Wang, F.; Wu, B.; Wu, N.; Huang, W.; Wang, H. L.; Jin, C. H.; Zhuang, L.; He, J.; Fu, L. et al. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv. Mater. 2017, 29, 1700439.

[51]

He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

[52]

Yu, Q. M.; Luo, Y. T.; Qiu, S. Y.; Li, Q. Y.; Cai, Z. Y.; Zhang, Z. Y.; Liu, J. M.; Sun, C. H.; Liu, B. L. Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano 2019, 13, 11874–11881.

[53]

Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 2020, 14, 5036–5045.

[54]

Zhang, Y.; Liu, K. L.; Wang, F. M.; Shifa, T. A.; Wen, Y.; Wang, F.; Xu, K.; Wang, Z. X.; Jiang, C.; He, J. Dendritic growth of monolayer ternary WS2(1−x)Se2x flakes for enhanced hydrogen evolution reaction. Nanoscale 2017, 9, 5641–5647.

[55]

Du, C. S.; Pan, N. CVD growth of carbon nanotubes directly on nickel substrate. Mater. Lett. 2005, 59, 1678–1682.

[56]

Shi, J. P.; Huan, Y. H.; Xiao, M. M.; Hong, M.; Zhao, X. X.; Gao, Y. L.; Cui, F. F.; Yang, P. F.; Pennycook, S. J.; Zhao, J. J. et al. Two-dimensional metallic NiTe2 with ultrahigh environmental stability, conductivity, and electrocatalytic activity. ACS Nano 2020, 14, 9011–9020.

[57]

Li, Y. P.; Yu, Y. F.; Huang, Y. F.; Nielsen, R. A.; Goddard III, W. A.; Li, Y.; Cao, L. Y. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 2015, 5, 448–455.

[58]

Xu, H.; Zhang, H. M.; Liu, Y. W.; Zhang, S. M.; Sun, Y. Y.; Guo, Z. X.; Sheng, Y. C.; Wang, X. D.; Luo, C.; Wu, X. et al. Controlled doping of wafer-scale PtSe2 films for device application. Adv. Funct. Mater. 2019, 29, 1805614.

[59]

Li, X. B.; Zhang, J. B.; Zhou, N.; Xu, H.; Yang, R. S. Insight into the role of H2 in WS2 growth by chemical vapor deposition. ACS Appl. Electron. Mater. 2021, 3, 5138–5146.

[60]

Chen, T. X.; Zhou, Y. Q.; Sheng, Y. W.; Wang, X. C.; Zhou, S.; Warner, J. H. Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene. ACS Appl. Mater. Interfaces 2018, 10, 7304–7314.

[61]

Shan, J. J.; Li, J. H.; Chu, X. Y.; Xu, M. Z.; Jin, F. J.; Fang, X.; Wei, Z. P.; Wang, X. H. Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures. Appl. Surf. Sci. 2018, 443, 31–38.

[62]

Chu, C. H.; Lin, H. C.; Yeh, C. H.; Liang, Z. Y.; Chou, M. Y.; Chiu, P. W. End-bonded metal contacts on WSe2 field-effect transistors. ACS Nano 2019, 13, 8146–8154.

[63]

Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563–571.

[64]

Shi, J. P.; Huan, Y. H.; Zhao, X. X.; Yang, P. F.; Hong, M.; Xie, C. Y.; Pennycook, S.; Zhang, Y. F. Two-dimensional metallic vanadium ditelluride as a high-performance electrode material. ACS Nano 2021, 15, 1858–1868.

[65]

Wang, Y.; Kim, C. H.; Yoo, Y.; Johns, J. E.; Frisbie, C. D. Field effect modulation of heterogeneous charge transfer kinetics at back-gated two-dimensional MoS2 electrodes. Nano Lett. 2017, 17, 7586–7592.

[66]

Wang, Y.; Udyavara, S.; Neurock, M.; Frisbie, C. D. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett. 2019, 19, 6118–6123.

[67]

Dong, L. Q.; Guo, S. Q.; Wang, Y. Y.; Zhang, Q. H.; Gu, L.; Pan, C. F.; Zhang, J. Y. Activating MoS2 basal planes for hydrogen evolution through direct CVD morphology control. J. Mater. Chem. A 2019, 7, 27603–27611.

[68]

Shi, J. P.; Wang, X. N.; Zhang, S.; Xiao, L. F.; Huan, Y. H.; Gong, Y.; Zhang, Z. P.; Li, Y. C.; Zhou, X. B.; Hong, M. et al. Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun. 2017, 8, 958.

[69]

Gao, J.; Li, L.; Tan, J. W.; Sun, H.; Li, B. C.; Idrobo, J. C.; Singh, C. V.; Lu, T. M.; Koratkar, N. Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 2016, 16, 3780–3787.

[70]

Yang, H.; He, Q. Y.; Liu, Y. W.; Li, H. Q.; Zhang, H.; Zhai, T. Y. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916–2936.

[71]

Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.

[72]

Yang, H.; Zhao, Y. H.; Wen, Q. L.; Mi, Y.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res. 2021, 14, 4814–4821.

[73]

Yang, H.; Zhao, Y. H.; Wen, Q. L.; Yang, R. O.; Liu, Y. W.; Li, H. Q.; Zhai, T. Y. Single WTe2 sheet-based electrocatalytic microdevice for directly detecting enhanced activity of doped electronegative anions. ACS Appl. Mater. Interfaces 2021, 13, 14302–14311.

[74]
You, H. ; Zhuo, Z. W. ; Lu, X. F. ; Liu, Y. W. ; Guo, Y. B. ; Wang, W. B. ; Yang, H. ; Wu, X. J. ; Li, H. Q. ; Zhai, T. Y. 1T′-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019, 1, 396–406.
[75]

Guo, Y. B.; Chen, Q.; Nie, A. M.; Yang, H.; Wang, W. B.; Su, J. W.; Wang, S. Z.; Liu, Y. W.; Wang, S.; Li, H. Q. et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano 2020, 14, 1635–1644.

[76]
Huang, J. Z. ; Zhuang, Z. C. ; Zhao, Y. ; Chen, J. Q. ; Zhuo, Z. W. ; Liu, Y. W. ; Lu, N. ; Li, H. Q. ; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. , Int. Ed. , in press,DOI: 10.1002/anie.202203522.
[77]

Park, S.; Yun, S. J.; Kim, Y. I.; Kim, J. H.; Kim, Y. M.; Kim, K. K.; Lee, Y. H. Tailoring domain morphology in monolayer NbSe2 and WxNb1−xSe2 heterostructure. ACS Nano 2020, 14, 8784–8792.

[78]

Jiang, H. J.; Hou, Z. H.; Luo, Y. Unraveling the mechanism for the sharp-tip enhanced electrocatalytic carbon dioxide reduction: The kinetics decide. Angew. Chem. , Int. Ed. 2017, 56, 15617–15621.

[79]

Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.

[80]

Sarma, P. V.; Kayal, A.; Sharma, C. H.; Thalakulam, M.; Mitra, J.; Shaijumon, M. M. Electrocatalysis on edge-rich spiral WS2 for hydrogen evolution. ACS Nano 2019, 13, 10448–10455.

[81]

Zhou, W. D.; Chen, M. Y.; Guo, M. M.; Hong, A. J.; Yu, T.; Luo, X. F.; Yuan, C. L.; Lei, W.; Wang, S. G. Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS2 catalyst. Nano Lett. 2020, 20, 2923–2930.

[82]

Duan, H. L.; Wang, C.; Li, G. N.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem. , Int. Ed. 2021, 60, 7251–7258.

[83]

Li, M. G.; Yao, J. D.; Wu, X. X.; Zhang, S. C.; Xing, B. R.; Niu, X. Y.; Yan, X. Y.; Yu, Y.; Liu, Y. L.; Wang, Y. W. P-type doping in large-area monolayer MoS2 by chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 6276–6282.

[84]

Li, S. Y.; Chen, X. Q.; Liu, F. M.; Chen, Y. F.; Liu, B. Y.; Deng, W. J.; An, B. X.; Chu, F. H.; Zhang, G. Q.; Li, S. L. et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636–11644.

[85]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[86]
Lee, J. ; Kim, C. ; Choi, K. S. ; Seo, J. ; Choi, Y. ; Choi, W. ; Kim, Y. M. ; Jeong, H. Y. ; Lee, J. H. ; Kim, G. et al. In-situ coalesced vacancies on MoSe2 mimicking noble metal: Unprecedented Tafel reaction in hydrogen evolution. Nano Energy 2019, 63, 103846.
[87]

Li, G. Q.; Zhang, D.; Qiao, Q.; Yu, Y. F.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S. et al. All the catalytic active sites of MoS2 for hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 16632–16638.

[88]

Xu, J.; Shao, G. L.; Tang, X.; Lv, F.; Xiang, H. Y.; Jing, C. F.; Liu, S.; Dai, S.; Li, Y. G.; Luo, J. et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun. 2022, 13, 2193.

[89]

Zhu, J. Q.; Wang, Z. C.; Dai, H. J.; Wang, Q. Q.; Yang, R.; Yu, H.; Liao, M. Z.; Zhang, J.; Chen, W.; Wei, Z. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.

[90]

He, Y. M.; Liu, L. R.; Zhu, C.; Guo, S. S.; Golani, P.; Koo, B.; Tang, P. Y.; Zhao, Z. Q.; Xu, M. Z.; Zhu, C. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 2022, 5, 212–221.

[91]

Liu, W. W.; Xie, J. F.; Guo, Y. Q.; Lou, S. S.; Gao, L.; Tang, B. Sulfurization-induced edge amorphization in copper-nickel-cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation. J. Mater. Chem. A 2019, 7, 24437–24444.

[92]

Masurkar, N.; Thangavel, N. K.; Arava, L. M. R. CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2018, 10, 27771–27779.

[93]
Zheng, B. J. ; Chen, Y. F. ; Qi, F. ; Wang, X. Q. ; Zhang, W. L. ; Li, Y. R. ; Li, X. S. 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater. 2017, 4, 025092.
[94]

Li, Y.; Majewski, M. B.; Islam, S. M.; Hao, S. Q.; Murthy, A. A.; DiStefano, J. G.; Hanson, E. D.; Xu, Y. B.; Wolverton, C.; Kanatzidis, M. G. et al. Morphological engineering of winged Au@MoS2 heterostructures for electrocatalytic hydrogen evolution. Nano Lett. 2018, 18, 7104–7110.

[95]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[96]

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew. Chem. , Int. Ed. 2020, 59, 16974–16981.

[97]

Wang, W. B.; Wang, Z. T.; Yang, R. O.; Duan, J. Y.; Liu, Y. W.; Nie, A. M.; Li, H. Q.; Xia, B. Y.; Zhai, T. Y. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew. Chem., Int. Ed. 2021, 60, 22940–22947.

[98]

Yang, R. O.; Duan, J. Y.; Dong, P. P.; Wen, Q. L.; Wu, M.; Liu, Y. W.; Liu, Y.; Li, H. Q.; Zhai, T. Y. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem., Int. Ed. 2022, 61, e202116706.

[99]

Zhao, Y. X.; Sun, M.; Wen, Q. L.; Wang, S. Z.; Han, S. B.; Huang, L. H.; Cheng, G.; Liu, Y. W.; Yu, L. Homologous NiCoP@NiFeP heterojunction array achieving high-current hydrogen evolution for alkaline anion exchange membrane electrolyzers. J. Mater. Chem. A 2022, 10, 10209–10218.

[100]

Duan, J. Y.; Liu, T. Y.; Zhao, Y. H.; Yang, R. O.; Zhao, Y.; Wang, W. B.; Liu, Y. W.; Li, H. Q.; Li, Y. F.; Zhai, T. Y. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun. 2022, 13, 2039.

[101]

Xie, J. F.; Gao, L.; Cao, S. S.; Liu, W. W.; Lei, F. C.; Hao, P.; Xia, X. Y.; Tang, B. Copper-incorporated hierarchical wire-on-sheet α-Ni(OH)2 nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. J. Mater. Chem. A 2019, 7, 13577–13584.

[102]

Xie, J. F.; Qu, H. C.; Lei, F. C.; Peng, X.; Liu, W. W.; Gao, L.; Hao, P.; Cui, G. W.; Tang, B. Partially amorphous nickel-iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. J. Mater. Chem. A 2018, 6, 16121–16129.

[103]

Li, S.; Tuo, P.; Xie, J. F.; Zhang, X. D.; Xu, J. G.; Bao, J.; Pan, B. C.; Xie, Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 2018, 47, 512–518.

[104]

Du, J. P.; Gao, J. J.; Gu, F. N.; Zhuang, J. H.; Lu, B.; Jia, L. H.; Xu, G. W.; Liu, Q.; Su, F. B. A strategy to regenerate coked and sintered Ni/Al2O3 catalyst for methanation reaction. Int. J. Hydrog. Energy 2018, 43, 20661–20670.

[105]

Kamlag, Y.; Goossens, A.; Colbeck, I.; Schoonman, J. Formation of nano SiC particles by laser-assisted CVD. Chem. Vap. Deposition 2003, 9, 125–129.

[106]

Loho, C.; Djenadic, R.; Bruns, M.; Clemens, O.; Hahn, H. Garnet-type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries. J. Electrochem. Soc. 2017, 164, A6131–A6139.

[107]

Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

[108]

Li, G. M.; Zhang, W. F.; Zhang, Y.; Lee, Y.; Zhao, Z. H.; Song, X. Z.; Tan, Z. Q.; Kim, K.; Liu, N. Ammonium salts: New synergistic additive for chemical vapor deposition growth of MoS2. J. Phys. Chem. Lett. 2021, 12, 12384–12390.

[109]

Lei, J. C.; Xie, Y.; Kutana, A.; Bets, K. V.; Yakobson, B. I. Salt-assisted MoS2 growth: Molecular mechanisms from the first principles. J. Am. Chem. Soc. 2022, 144, 7497–7503.

[110]

Voiry, D.; Fullon, R.; Yang, J.; De Carvalho Castro E Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003–1009.

[111]

Gao, D. Q.; Xia, B. R.; Wang, Y. Y.; Xiao, W.; Xi, P. X.; Xue, D. S.; Ding, J. Dual-native vacancy activated basal plane and conductivity of MoSe2 with high-efficiency hydrogen evolution reaction. Small 2018, 14, 1704150.

[112]

Shi, J. P.; Huan, Y. H.; Hong, M.; Xu, R. Z.; Yang, P. F.; Zhang, Z. P.; Zou, X. L.; Zhang, Y. F. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal-semiconductor transition. ACS Nano 2019, 13, 8442–8451.

[113]

Lu, D. L.; Ren, X. H.; Ren, L.; Xue, W. M.; Liu, S. Q.; Liu, Y. D.; Chen, Q.; Qi, X.; Zhong, J. X. Direct vapor deposition growth of 1T′ MoTe2 on carbon cloth for electrocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2020, 3, 3212–3219.

[114]

Sherrell, P. C.; Palczynski, P.; Sokolikova, M. S.; Reale, F.; Pesci, F. M.; Och, M.; Mattevi, C. Large-area CVD MoS2/WS2 heterojunctions as a photoelectrocatalyst for salt-water oxidation. ACS Appl. Energy Mater. 2019, 2, 5877–5882.

[115]

Abbasi, P.; Asadi, M.; Liu, C.; Sharifi-Asl, S.; Sayahpour, B.; Behranginia, A.; Zapol, P.; Shahbazian-Yassar, R.; Curtiss, L. A.; Salehi-Khojin, A. Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide. ACS Nano 2017, 11, 453–460.

[116]
Pammi, S. V. N. ; Maddaka, R. ; Tran, V. D. ; Eom, J. H. ; Pecunia, V. ; Majumder, S. ; Kim, M. D. ; Yoon, S. G. CVD-deposited hybrid lead halide perovskite films for high-responsivity, self-powered photodetectors with enhanced photo stability under ambient conditions. Nano Energy 2020, 74, 104872.
[117]

Leyden, M. R.; Jiang, Y.; Qi, Y. B. Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. J. Mater. Chem. A 2016, 4, 13125–13132.

Nano Research
Pages 101-116
Cite this article:
Zhao Y, Huang J, Chen J, et al. Chemical-vapor-deposition-grown 2D transition metal dichalcogenides: A generalist model for engineering electrocatalytic hydrogen evolution. Nano Research, 2023, 16(1): 101-116. https://doi.org/10.1007/s12274-022-4727-2
Topics:

1025

Views

7

Crossref

5

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 23 May 2022
Revised: 19 June 2022
Accepted: 01 July 2022
Published: 19 August 2022
© Tsinghua University Press 2022
Return