AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomically dispersed Co-Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation

Hao Sun1,2Ling Lin1,3Wei Hua1,3Xulan Xie1,3Qiaoqiao Mu1,3Kun Feng4Jun Zhong4Fenglei Lyu1,2Zhao Deng1,3Yang Peng1,2,5( )
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215006, China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Soochow Municipal laboratory for low carbon technologies and industries, Soochow University, Suzhou 215006, China
Show Author Information

Graphical Abstract

Atomically dispersed Co-Cu alloy fabricated by in-situ reconstruction of the trace-Co doped Cu metal-organic framework is employed as the catalyst for electrochemical CO2 reduction. The Co dopants in Cu favor *CO protonation vs. C−C coupling through enhanced *H adsorption and reduced *CO coverage, promoting thereby the methane selectivity.

Abstract

Electroreduction of carbon dioxide into value-added fuels or chemicals using renewable energy helps to effectively reduce carbon dioxide emission and alleviate the greenhouse effect while storing intermittent energies. Due to the existing infrastructure of global natural gas utilization and distribution, methane produced in such a green route attracts wide interests. However, limited success has been witnessed in the practical application of catalysts imparting satisfactory methane activity and selectivity. Herein, we report the fabrication of an atomically dispersed Co-Cu alloy through the reconstruction of trace-Co doped Cu metal-organic framework. This catalyst exhibits a methane Faradaic efficiency of 60% ± 1% with the corresponding partial current density of 303 ± 5 mA·cm−2. Operando X-ray adsorption spectroscopy and attenuated-total-reflection surface enhanced infrared spectroscopy unravel that the introduction of atomically dispersed Co in Cu favors *CO protonation via enhancing surface water activation, and suppresses C−C coupling by reducing *CO coverage, thereby leading to high methane selectivity.

Electronic Supplementary Material

Download File(s)
12274_2022_4728_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Smol, J. P. Climate change: A planet in flux. Nature 2012, 483, S12–S15.

[2]

Pearson, P. N.; Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 2000, 406, 695–699.

[3]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[4]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, eaav3506.

[5]

Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126–129.

[6]

Armstrong, R. C.; Wolfram, C.; De Jong, K. P.; Gross, R.; Lewis, N. S.; Boardman, B.; Ragauskas, A. J.; Ehrhardt-Martinez, K.; Crabtree, G.; Ramana, M. V. The frontiers of energy. Nat. Energy 2016, 1, 15020.

[7]

Li, H. T.; Pan, Y.; Wang, Z. C.; Yu, Y. D.; Xiong, J.; Du, H. Y.; Lai, J. P.; Wang, L.; Feng, S. H. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064.

[8]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

[9]

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[10]

Sun, H.; Chen, L.; Xiong, L. K.; Feng, K.; Chen, Y. F.; Zhang, X.; Yuan, X. Z.; Yang, B. Y.; Deng, Z.; Liu, Y. et al. Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nat. Commun. 2021, 12, 6823.

[11]

Howarth, R. W.; Ingraffea, A.; Engelder, T. Should fracking stop? Nature 2011, 477, 271–275.

[12]

Gan, Y.; El-Houjeiri, H. M.; Badahdah, A.; Lu, Z. F.; Cai, H.; Przesmitzki, S.; Wang, M. Carbon footprint of global natural gas supplies to China. Nat. Commun. 2020, 11, 824.

[13]

Connolly, B. M.; Aragones-Anglada, M.; Gandara-Loe, J.; Danaf, N. A.; Lamb, D. C.; Mehta, J. P.; Vulpe, D.; Wuttke, S.; Silvestre-Albero, J.; Moghadam, P. Z. et al. Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nat. Commun. 2019, 10, 2345.

[14]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[15]

Xie, X. L.; Zhang, X.; Xie, M.; Xiong, L. K.; Sun, H.; Lu, Y. T.; Mu, Q. Q.; Rummeli, M. H.; Xu, J. B.; Li, S. et al. Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 2022, 13, 63.

[16]

Tan, Y. C.; Lee, K. B.; Song, H.; Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C–C coupling in CO2 electroreduction. Joule 2020, 4, 1104–1120.

[17]

Jouny, M.; Luc, W.; Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 2018, 57, 2165–2177.

[18]
Wang, Z. Q.; Zu, X. L.; Li, X. D.; Li, L.; Wu, Y.; Wang, S. M.; Ling, P. Q.; Zhao, Y.; Sun, Y. F.; Xie, Y. Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites. Nano Res. 2022, 15, 6999–7007.
[19]

Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu–Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.

[20]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[21]

Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132.

[22]

Zhao, Q.; Martirez, J. M. P.; Carter, E. A. Revisiting understanding of electrochemical CO2 reduction on Cu (111): Competing proton-coupled electron transfer reaction mechanisms revealed by embedded correlated wavefunction theory. J. Am. Chem. Soc. 2021, 143, 6152–6164.

[23]

Xiong, L. K.; Zhang, X.; Chen, L.; Deng, Z.; Han, S.; Chen, Y. F.; Zhong, J.; Sun, H.; Lian, Y. B.; Yang, B. Y. et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Adv. Mater. 2021, 33, 2101741.

[24]

Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.

[25]

Shao, P.; Zhou, W.; Hong, Q. L.; Yi, L. C.; Zheng, L. R.; Wang, W. J.; Zhang, H. X.; Zhang, H. B.; Zhang, J. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2 electroreduction to ethylene. Angew. Chem., Int. Ed. 2021, 60, 16687–16692.

[26]

Wang, X.; Xu, A. N.; Li, F. W.; Hung, S. F.; Nam, D. H.; Gabardo, C. M.; Wang, Z. Y.; Xu, Y.; Ozden, A.; Rasouli, A. S. et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J. Am. Chem. Soc. 2020, 142, 3525–3531.

[27]

Li, Y. H.; Xu, A. N.; Lum, Y.; Wang, X.; Hung, S. F.; Chen, B.; Wang, Z. Y.; Xu, Y.; Li, F. W.; Abed, J. et al. Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nat. Commun. 2020, 11, 6190.

[28]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[29]

Carson, C. G.; Hardcastle, K.; Schwartz, J.; Liu, X. T.; Hoffmann, C.; Gerhardt, R. A.; Tannenbaum, R. Synthesis and structure characterization of copper terephthalate metal-organic frameworks. Eur. J. Inorg. Chem. 2009, 2009, 2338–2343.

[30]

Wang, X.; Ou, P. F.; Wicks, J.; Xie, Y.; Wang, Y.; Li, J.; Tam, J.; Ren, D.; Howe, J. Y.; Wang, Z. Y. et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 2021, 12, 3387.

[31]

Xu, Y.; Li, F. W.; Xu, A. N.; Edwards, J. P.; Hung, S. F.; Gabardo, C. M.; O’Brien, C. P.; Liu, S. J.; Wang, X.; Li, Y. H. et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat. Commun. 2021, 12, 2932.

[32]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[33]

Zhang, Y.; Dong, L. Z.; Li, S.; Huang, X.; Chang, J. N.; Wang, J. H.; Zhou, J.; Li, S. L.; Lan, Y. Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390.

[34]

Zhang, L.; Li, X. X.; Lang, Z. L.; Liu, Y.; Liu, J.; Yuan, L.; Lu, W. Y.; Xia, Y. S.; Dong, L. Z.; Yuan, D. Q. et al. Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 2021, 143, 3808–3816.

[35]
He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-3532-7.
[36]

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

[37]

Kim, Y.; Park, S.; Shin, S. J.; Choi, W.; Min, B. K.; Kim, H.; Kim, W.; Hwang, Y. J. Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 2020, 13, 4301–4311.

[38]

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu (100) electrodes. Angew. Chem., Int. Ed. 2017, 56, 3621–3624.

[39]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[40]

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

[41]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH­4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[42]

Sun, S. N.; Lu, J. N.; Li, Q.; Dong, L. Z.; Huang, Q.; Liu, J.; Lan, Y. Q. Establishing spatially elastic hydrogen-bonding interaction in electrochemical process for selective CO2-to-CH4 conversion. Chem. Catal. 2021, 1, 1133–1144.

Nano Research
Pages 3680-3686
Cite this article:
Sun H, Lin L, Hua W, et al. Atomically dispersed Co-Cu alloy reconstructed from metal-organic framework to promote electrochemical CO2 methanation. Nano Research, 2023, 16(3): 3680-3686. https://doi.org/10.1007/s12274-022-4728-1
Topics:
Part of a topical collection:

1225

Views

11

Crossref

14

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 28 May 2022
Revised: 29 June 2022
Accepted: 30 June 2022
Published: 01 August 2022
© Tsinghua University Press 2022
Return