AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Covalent edge-functionalization of graphene oxide with porphyrins for highly efficient photoinduced electron/energy transfer and enhanced nonlinear optical performance

Lulu Fu1,2Mark G. Humphrey3Chi Zhang1,2( )
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
Show Author Information

Graphical Abstract

Edge-expanding approach using rarely-mentioned graphene-o-quinones and formyl porphyrins to constructing a conjugated nanohybrid with a highly efficient intrahybrid photoinduced energy/electron transfer and an enhanced nonlinear optical performance.

Abstract

Covalent modification of graphene oxide (GO) with functional chromophores plays an important role in constructing various kinds of advanced optoelectronic materials for applications in molecular diagnosis, light-harvesting, photodynamic therapy, and optical limiting. Herein, a new approach to functionalizing GO with meso-substituted formylporphyrins at GO’s edge sites via imidazole condensation is developed, which affords a novel GO-imi-Por nanohybrid covalently-linked by imidazole rings between two components. The structure of the GO-imi-Por nanohybrid was thoroughly characterized by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR), Raman, and X-ray photoelectron spectroscopy (XPS). The red-shifted steady-state absorption, 95% quenched fluorescence, and largely enhanced nonlinear optical (NLO) properties through Z-scan studies at lower input energies demonstrate that this GO-imi-Por nanohybrid exhibits a more effective photoinduced energy/electron transfer between the intrahybrid two components and can be flexibly applied as an optical limiter candidate. This covalent edge-functionalization approach provides a new paradigm for constructing various edge-expanding GO nanohybrids with an efficient energy/electron transfer process and improved nonlinear optical effects, which would draw inspiration for engineering more adaptable optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2022_4729_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Rickhaus, P.; Liu, M. H.; Kurpas, M.; Kurzmann, A.; Lee, Y. J.; Overweg, H.; Eich, M.; Pisoni, R.; Taniguchi, T.; Watanabe, K. et al. The electronic thickness of graphene. Sci. Adv. 2020, 6, eaay8409.

[3]

Matochová, D.; Medved’, M.; Bakandritsos, A.; Steklý, T.; Zbořil, R.; Otyepka, M. 2D chemistry, chemical control of graphene derivatization. J. Phys. Chem. Lett. 2018, 9, 3580–3585.

[4]

Ambrosi, A.; Pumera, M. Exfoliation of layered materials using electrochemistry. Chem. Soc. Rev. 2018, 47, 7213–7224.

[5]

Dong, N. N.; Li, Y. X.; Zhang, S. F.; Zhang, X. Y.; Wang, J. Optically induced transparency and extinction in dispersed MoS2, MoSe2, and graphene nanosheets. Adv. Opt. Mater. 2017, 5, 1700543.

[6]

Dissanayake, D. M. A. S.; Cifuentes, M. P.; Humphrey, M. G. Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coord. Chem. Rev. 2018, 375, 489–513.

[7]

Wang, A. J.; Ye, J.; Humphrey, M. G.; Zhang, C. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties. Adv. Mater. 2018, 30, 1705704.

[8]

Xu, T.; Zhao, S. J.; Lin, C. W.; Zheng, X. L.; Lan, M. H. Recent advances in nanomaterials for sonodynamic therapy. Nano Res. 2020, 13, 2898–2908.

[9]

Tarelho, J. P. G.; Dos Santos, M. P. S.; Ferreira, J. A. F.; Ramos, A.; Kopyl, S.; Kim, S. O.; Hong, S.; Kholkin, A. Graphene-based materials and structures for energy harvesting with fluids-A review. Mater. Today 2018, 21, 1019–1041.

[10]

Li, X. L.; Zhi, L. J. Graphene hybridization for energy storage applications. Chem. Soc. Rev. 2018, 47, 3189–3216.

[11]

Guo, J.; Yan, X. M.; Liu, Q.; Li, Q.; Xu, X.; Kang, L. T.; Cao, Z. M.; Chai, G. L.; Chen, J.; Wang, Y. B. et al. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347–355.

[12]

Hou, J.; Zhang, B.; Li, D. Q.; Fu, Y. B.; Liu, G.; Chen, Y. Enabling superior stretchable resistive switching memory via polymer-functionalized graphene oxide nanosheets. J. Mater. Chem. C 2019, 7, 14664–14671.

[13]

Navalón, S.; Herance, J. R.; Alvaro, M.; García, H. Covalently modified graphenes in catalysis, electrocatalysis and photoresponsive materials. Chem. -Eur. J. 2017, 23, 15244–15275.

[14]

Stylianakis, M. M.; Konios, D.; Kakavelakis, G.; Charalambidis, G.; Stratakis, E.; Coutsolelos, A. G.; Kymakis, E.; Anastasiadis, S. H. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale 2015, 7, 17827–17835.

[15]

Song, W. N.; He, C. Y.; Zhang, W.; Gao, Y. C.; Yang, Y. X.; Wu, Y. Q.; Chen, Z. M.; Li, X. C.; Dong, Y. L. Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon 2014, 77, 1020–1030.

[16]

Eng, A. Y. S.; Chua, C. K.; Pumera, M. Refinements to the structure of graphite oxide: Absolute quantification of functional groups via selective labelling. Nanoscale 2015, 7, 20256–20266.

[17]

Liu, P. P.; Feng, Y. Q.; Gu, C. Z.; Meng, S. X.; Zhang, B. The facile synthesis of 5-formylporphyrin. Chin. Chem. Lett. 2012, 23, 505–508.

[18]

Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum. Elect. 1990, 26, 760–769.

[19]

Sobral, A. J. F. N.; Rebanda, N. G. C. L.; Da Silva, M.; Lampreia, S. H.; Silva, M. R.; Beja, A. M.; Paixão, J. A.; Rocha Gonsalves, Gonsalves, A. M. D. One-step synthesis of dipyrromethanes in water. Tetrahedron Lett. 2003, 44, 3971–3973.

[20]

Plater, M. J.; Aiken, S.; Bourhill, G. A new synthetic route to donor-acceptor porphyrins. Tetrahedron 2002, 58, 2405–2413.

[21]

Fu, L. L.; Ye, J.; Li, H.; Huang, Z. P.; Humphrey, M. G.; Zhang, C. Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrid. Nano Res. 2022, 15, 1355–1365.

[22]

Kubendhiran, S.; Sakthinathan, S.; Chen, S. M.; Tamizhdurai, P.; Shanthi, K.; Karuppiah, C. Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J. Colloid Interface Sci. 2017, 497, 207–216.

[23]

Gacka, E.; Wojcik, A.; Mazurkiewicz-Pawlicka, M.; Malolepszy, A.; Stobiński, L.; Kubas, A.; Hug, G. L.; Marciniak, B.; Lewandowska-Andralojc, A. Noncovalent porphyrin-graphene oxide nanohybrids: The pH-dependent behavior. J. Phys. Chem. C 2019, 123, 3368–3380.

[24]

Bottari, G.; Herranz, M. Á.; Wibmer, L.; Volland, M.; Rodríguez-Pérez, L.; Guldi, D. M.; Hirsch, A.; Martín, N.; D'Souza, F.; Torres, T. Chemical functionalization and characterization of graphene-based materials. Chem. Soc. Rev. 2017, 46, 4464–4500.

[25]

Dasler, D.; Schäfer, R. A.; Minameyer, M. B.; Hitzenberger, J. F.; Hauke, F.; Drewello, T.; Hirsch, A. Direct covalent coupling of porphyrins to graphene. J. Am. Chem. Soc. 2017, 139, 11760–11765.

[26]

Garg, K.; Shanmugam, R.; Ramamurthy, P. C. New covalent hybrids of graphene oxide with core modified and -expanded porphyrins: Synthesis characterisation and their nonlinear optical properties. Carbon 2017, 122, 307–318.

[27]

Wang, A. J.; Yu, W.; Xiao, Z. G.; Song, Y. L.; Long, L. L.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. A 1, 3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push-pull motif. Nano Res. 2015, 8, 870–886.

[28]

Wang, A. J.; Song, J. B.; Huang, Z. P.; Song, Y. L.; Yu, W.; Dong, H. L.; Hu, W. P.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Res. 2016, 9, 458–472.

[29]

Dyke, C. A.; Stewart, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett 2004, 155–160.

[30]

Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

[31]

Spampinato, V.; Ceccone, G.; Giordani, S. Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 2015, 10, 019006.

[32]

Pandi, K.; Lakhera, S. K.; Neppolian, B. Facile synthesis of nitrogen deficient graphitic carbon nitride for photocatalytic hydrogen production activity. Mater. Lett. 2021, 303, 130467.

[33]

Schlesinger, I.; Powers-Riggs, N. E.; Logsdon, J. L.; Qi, Y.; Miller, S. A.; Tempelaar, R.; Young, R. M.; Wasielewski, M. R. Charge-transfer biexciton annihilation in a donor-acceptor co-crystal yields high-energy long-lived charge carriers. Chem. Sci. 2020, 11, 9532–9541.

[34]
Li, D. Q. ; Zhang, B. ; Zhu, C. X. ; Tian, X. Y. ; Zhao, Z. Z. ; Chen, Y. In-situ growing D-A polymer from the surface of reduced graphene oxide: Synthesis and nonvolatile ternary memory effect. Carbon 2019, 143, 851–858.
[35]

Liu, Z. B.; Tian, J. G.; Guo, Z.; Ren, D. M.; Du, F.; Zheng, J. Y.; Chen, Y. S. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv. Mater. 2008, 20, 511–515.

[36]

Wang, A. J.; Long, L. L.; Zhao, W.; Song, Y. L.; Humphrey, M. G.; Cifuentes, M. P.; Wu, X. Z.; Fu, Y. S.; Zhang, D. D.; Li, X. F. et al. Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 2013, 53, 327–338.

[37]

Liu, Z. W.; Dong, N. N.; Jiang, P.; Wang, K. X.; Wang, J.; Chen, Y. Reduced graphene oxide chemically modified with aggregation-induced emission polymer for solid-state optical limiter. Chem. -Eur. J. 2018, 24, 19317–19322.

[38]

Du, Y. L.; Dong, N. N.; Zhang, M. H.; Zhu, K. H.; Na, R.; Zhang, S. L.; Sun, N. W.; Wang, G. B.; Wang, J. Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting. Phys. Chem. Chem. Phys. 2017, 19, 2252–2260.

[39]

Limosani, F.; Kaur, R.; Cataldo, A.; Bellucci, S.; Micciulla, F.; Zanoni, R.; Lembo, A.; Wang, B. Z.; Pizzoferrato, R.; Guldi, D. M. et al. Designing cascades of electron transfer processes in multicomponent graphene conjugates. Angew. Chem. , Int. Ed. 2020, 59, 23706–23715.

[40]

Chen, S. H.; Luo, R.; Li, X. Y.; He, M. Y.; Fu, S. S.; Xu, J. L. Aggregation induced emission and nonlinear optical properties of an intramolecular charge-transfer compound. Materials (Basel) 2021, 14, 1909.

[41]

Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. Sequential energy and electron transfer in an artificial reaction center: Formation of a long-lived charge-separated state. J. Am. Chem. Soc. 2000, 122, 6535–6551.

[42]

Ní Mhuircheartaigh, E. M.; Giordani, S.; Blau, W. J. Linear and nonlinear optical characterization of a tetraphenylporphyrin-carbon nanotube composite system. J. Phys. Chem. B 2006, 110, 23136–23141.

[43]

Megiatto, J. D.; Schuster, D. I. Jr.; De Miguel, G.; Wolfrum, S.; Guldi, D. M. Topological and conformational effects on electron transfer dynamics in porphyrin-[60]fullerene interlocked systems. Chem. Mater. 2012, 24, 2472–2485.

[44]

Neto, N. B.; De Boni, L.; Mendonça, C. R.; Misoguti, L.; Queiroz, S. L.; Dinelli, L. R.; Batista, A. A.; Zilio, S. C. Nonlinear absorption dynamics in tetrapyridyl metalloporphyrins. J. Phys. Chem. B 2005, 109, 17340–17345.

Nano Research
Pages 25-32
Cite this article:
Fu L, Humphrey MG, Zhang C. Covalent edge-functionalization of graphene oxide with porphyrins for highly efficient photoinduced electron/energy transfer and enhanced nonlinear optical performance. Nano Research, 2023, 16(1): 25-32. https://doi.org/10.1007/s12274-022-4729-0
Topics:

1107

Views

13

Crossref

17

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 06 February 2022
Revised: 18 June 2022
Accepted: 01 July 2022
Published: 08 August 2022
© Tsinghua University Press 2022
Return