AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion

Yi Yang1,2,§Hong Sun3,§Bo Zhang2Lulin Hu2Lu Xu1,2( )Jingcheng Hao2,4( )
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China
Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, China

§ Yi Yang and Hong Sun contributed equally to this work.

Show Author Information

Graphical Abstract

We report a hydrogel having mechanical strength, self-healing, lubrication and anti-corrosion solely consisting of aluminium hydroxide nanosheets and water. The gel properties can be optimized by controlling the selfassembled superstructure of the nanosheets.

Abstract

Synthetic hydrogels with attractive mechanical strength and self-healing are particular appealing, in light of their significance and prospects in industrial, engineering and biomimetic fields. Fabricating various mechanically robust and self-healable hydrogels have achieved some successes in using strong covalently bonded organic polymers as building blocks. However, creation of such soft materials entirely building on rigid inorganic components remains greatly challenging, because inorganic materials are usually poorly flexible and processable. In this study, mechanical robustness and self-recovery are successfully integrated into a single-component colloidal hydrogel system of aluminium hydroxide nanosheets (AHNSs). The inorganic colloidal hydrogel gains an excellent elasticity and stiffness, as indicated by its elastic modulus >10 MPa, due to the use of tough AHNS gelator and the formation of long-range ordered lamellar architectures consisting of self-assembled side-to-side or interlaced-stacking NS superstructures. The metastability in internal gel network endows the hydrogel a self-healing efficiency of larger than 100%. The AHNS hydrogel has been demonstrated to be effectively lubricative and anti-corrosive. Its mechanical, tribological and anti-corrosion properties can be optimized by tuning its internal NS configuration and salt content. Our study may be a potent replenishment to the scope of materials science and may provide new insights into nanotechnology, colloidal chemistry, green tribology and mechanical engineering.

Electronic Supplementary Material

Download File(s)
12274_2022_4730_MOESM1_ESM.pdf (2.3 MB)

References

[1]

Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892.

[2]

Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

[3]

Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.

[4]

Ru, Y. F.; Fang, R. C.; Gu, Z. D.; Jiang, L.; Liu, M. J. Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem., Int. Ed. 2020, 59, 11876–11880.

[5]

Zhang, H.; Hou, C. P.; Song, L. X.; Ma, Y.; Ali, Z.; Gu, J. W.; Zhang, B. L.; Zhang, H. P.; Zhang, Q. Y. A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating. Chem. Eng. J. 2018, 334, 598–610.

[6]

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

[7]

Zhang, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021, 12, 4082.

[8]

Kim, S. H.; Jung, S.; Yoon, I. S.; Lee, C.; Oh, Y.; Hong, J. M. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Adv. Mater. 2018, 30, 1800109.

[9]

Xue, Z. J.; Li, X.; Chen, X. Y.; Huang, C. H.; Ye, H. C.; Li, A. L.; Wang, T. Mechanical and tribological performances enhanced by self-assembled structures. Adv. Mater. 2020, 32, 2002004.

[10]

Chen, S. M.; Gao, H. L.; Sun, X. H.; Ma, Z. Y.; Ma, T.; Xia, J.; Zhu, Y. B.; Zhao, R.; Yao, H. B.; Wu, H. A. et al. Superior biomimetic nacreous bulk nanocomposites by a multiscale soft-rigid dual-network interfacial design strategy. Matter 2019, 1, 412–427.

[11]

Cargnello, M.; Johnston-Peck, A. C.; Diroll, B. T.; Wong, E.; Datta, B.; Damodhar, D.; Doan-Nguyen, V. V. T.; Herzing, A. A.; Kagan, C. R.; Murray, C. B. Substitutional doping in nanocrystal superlattices. Nature 2015, 524, 450–453.

[12]

Wang, T.; Wang, X. R.; LaMontagne, D.; Wang, Z. W.; Cao, Y. C. Macroscale lateral alignment of semiconductor nanorods into freestanding thin films. J. Am. Chem. Soc. 2013, 135, 6022–6025.

[13]

Xue, P.; Bisoyi, H. K.; Chen, Y. H.; Zeng, H.; Yang, J. J.; Yang, X.; Lv, P. F.; Zhang, X. M.; Priimagi, A.; Wang, L. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene Nanosheets. Angew. Chem., Int. Ed. 2021, 60, 3390–3396.

[14]

Sano, K.; Arazoe, Y. O.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Aida, T. Extra-large mechanical anisotropy of a hydrogel with maximized electrostatic repulsion between Cofacially aligned 2D electrolytes. Angew. Chem., Int. Ed. 2018, 57, 12508–12513.

[15]

Lin, W. F.; Kluzek, M.; Iuster, N.; Shimoni, E.; Kampf, N.; Goldberg, R.; Klein, J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science 2020, 370, 335–338.

[16]

Liu, M. J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Takata, M.; Aida, T. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 2015, 517, 68–72.

[17]

Green, J. J.; Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 2016, 540, 386–394.

[18]

Sano, K.; Igarashi, N.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T.; Ishida, Y. A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 2020, 11, 6026.

[19]

Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 2008, 319, 1370–1374.

[20]

Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

[21]

Dong, R. J.; Zhou, Y. F.; Huang, X. H.; Zhu, X. Y.; Lu, Y. F.; Shen, J. Functional supramolecular polymers for biomedical applications. Adv. Mater. 2015, 27, 498–526.

[22]

Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Supramolecular biomaterials. Nat. Mater. 2016, 15, 13–26.

[23]

Sano, K.; Ishida, Y.; Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem., Int. Ed. 2018, 57, 2532–2543.

[24]

Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124.

[25]

Prince, E.; Kumacheva, E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat. Rev. Mater. 2019, 4, 99–115.

[26]

Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; Van Buul, A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom, R. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013, 493, 651–655.

[27]

de Almeida, P.; Jaspers, M.; Vaessen, S.; Tagit, O.; Portale, G.; Rowan, A. E.; Kouwer, P. H. J. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun. 2019, 10, 609.

[28]

Sano, K.; Kim, Y. S.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T. Photonic water dynamically responsive to external stimuli. Nat. Commun. 2016, 7, 12559.

[29]

Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 2012, 24, 5024–5044.

[30]

Wegst, U. G. K; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[31]

Yu, A. C.; Chen, H. X.; Chan, D.; Agmon, G.; Stapleton, L. M.; Sevit, A. M.; Tibbitt, M. W.; Acosta, J. D.; Zhang, T.; Franzia, P. W. et al. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc. Natl. Acad. Sci. USA 2016, 113, 14255–14260.

[32]

Zhao, Z. Y.; Wang, Z.; Li, G.; Cai, Z. W.; Wu, J. Z.; Wang, L. F.; Deng, L.; Cai, M.; Cui, W. G. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv. Funct. Mater. 2021, 31, 2103339.

[33]

Mo, F. L.; Jiang, K.; Zhao, D.; Wang, Y. Q.; Song, J.; Tan, W. H. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliverv Rev. 2021, 168, 79–98.

[34]

Yang, F. C.; Zhao, J. C.; Koshut, W. J.; Watt, J.; Riboh, J. C.; Gall, K.; Wiley, B. J. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 2020, 30, 2003451.

[35]

Jiao, C.; Chen, Y. Y.; Liu, T. Q.; Peng, X.; Zhao, Y. X.; Zhang, J. N.; Wu, Y. Q.; Wang, H. L. Rigid and strong thermoresponsive shape memory hydrogels transformed from poly (vinylpyrrolidone-co-acryloxy acetophenone) organogels. ACS Appl. Mater. Interfaces 2018, 10, 32707–32716.

[36]

Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822.

[37]

Kaneko, D.; Tada, T.; Kurokawa, T.; Gong, J. P.; Osada, Y. Mechanically strong hydrogels with ultra-low frictional coefficients. Adv. Mater. 2005, 17, 535–538.

[38]

Zhang, X. W.; Wang, J.; Jin, H.; Wang, S. T.; Song, W. L. Bioinspired supramolecular lubricating hydrogel induced by shear force. J. Am. Chem. Soc. 2018, 140, 3186–3189.

[39]

Wang, J. F.; Lin, L.; Cheng, Q. F.; Jiang, L. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew. Chem., Int. Ed. 2012, 51, 4676–4680.

[40]

Cong, H. P.; Wang, P.; Yu, S. H. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.

[41]

Diba, M.; Wang, H. N.; Kodger, T. E.; Parsa, S.; Leeuwenburgh, S. C. G. Highly elastic and self-healing composite colloidal gels. Adv. Mater. 2017, 29, 1604672.

[42]

Huang, Y. F.; Zhang, M. Q.; Ruan, W. H. High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J. Mater. Chem. A 2014, 2, 10508–10515.

[43]

Wang, H. N.; Hansen, M. B.; Löwik, D. W. P. M.; van Hest, J. C. M.; Li, Y. B.; Jansen, J. A.; Leeuwenburgh, S. C. G. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels. Adv. Mater. 2011, 23, H119–H124.

[44]

Wang, Q.; Wang, L.; Detamore, M. S.; Berkland, C. Biodegradable colloidal gels as moldable tissue engineering scaffolds. Adv. Mater. 2008, 20, 236–239.

[45]

Cong, H. P.; Wang, P.; Yu, S. H. Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 2014, 10, 448–453.

[46]

Mourad, M. C. D.; Byelov, D. V.; Petukhov, A. V.; Lekkerkerker, H. N. W. Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. J. Phys. :Condens. Matter 2008, 20, 494201.

[47]

Mourad, M. C. D.; Byelov, D. V.; Petukhov, A. V.; Matthijs de Winter, D. A.; Verkleij, A. J.; Lekkerkerker, H. N. W. Sol-gel transitions and liquid crystal phase transitions in concentrated aqueous suspensions of colloidal gibbsite platelets. J. Phys. Chem. B 2009, 113, 11604–11613.

[48]

Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.

[49]

Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Res. 2018, 11, 1873–1882.

[50]

Li, Z. X.; Yu, Q. L.; Zhang, C. Y.; Liu, Y. P.; Liang, J.; Wang, D. A.; Zhou, F. Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy. Surf. Coat. Technol. 2019, 357, 515–525.

[51]

Xu, L.; Feng, L.; Dong, R. H.; Hao, J. C.; Dong, S. L. Transfection efficiency of DNA enhanced by association with salt-free catanionic vesicles. Biomacromolecules 2013, 14, 2781–2789.

[52]

Xu, L.; Feng, L.; Dong, S. L.; Hao, J. C. Magnetic controlling of migration of DNA and proteins using one-step modified gold nanoparticles. Chem. Commun. 2015, 51, 9257–9260.

[53]

Pinaud, F.; Russo, L.; Pinet, S.; Gosse, I.; Ravaine, V.; Sojic, N. Enhanced electrogenerated chemiluminescence in thermoresponsive microgels. J. Am. Chem. Soc. 2013, 135, 5517–5520.

[54]

Pedersen, S. L.; Huynh, T. H.; Pöschko, P.; Fruergaard, A. S.; Jarlstad Olesen, M. T.; Chen, Y. Q.; Birkedal, H.; Subbiahdoss, G.; Reimhult, E.; Thøgersen, J. et al. Remotely triggered liquefaction of hydrogel materials. ACS Nano 2020, 14, 9145–9155.

[55]
Wang, C. ; Liu, X. ; Wulf, V. ; Vázquez-González, M. ; Fadeev, M. ; Willner, I. DNA-based hydrogels loaded with Au nanoparticles or Au nanorods: Thermoresponsive plasmonic matrices for shape-memory, self-healing, controlled release, and mechanical applications. ACS Nano 2019, 13, 3424–3433.
[56]

Wang, D.; Wei, G. C.; Dong, R. H.; Hao, J. C. Multiresponsive viscoelastic vesicle gels of nonionic C12EO4 and anionic AzoNa. Chem. -Eur. J. 2013, 19, 8253–8260.

[57]

Liu, Y. H.; Guo, Y. Y.; Zhang, Z.; Huang, Z. H.; Qi, P.; Cui, J. W.; Song, A. X.; Hao, J. C. A new application of Krafft point concept: An ultraviolet-shielded surfactant switchable window. Chem. Commun. 2020, 56, 5315–5318.

[58]

Takahashi, K.; Shitara, Y.; Kaimai, T.; Kanno, A.; Mori, S. Lubricating properties of TR gel-lube-influence of chemical structure and content of gel agent. Tribol. Int. 2010, 43, 1577–1583.

[59]

Li, H. G.; Hao, J. C. Phase behavior and rheological properties of a salt-free catanionic surfactant TTAOH/LA/H2O system. J. Phys. Chem. B 2008, 112, 10497–10508.

[60]

Li, H. G.; Wieczorek, S. A.; Xin, X.; Kalwarczyk, T.; Ziebacz, N.; Szymborski, T.; Hołyst, R.; Hao, J. C.; Gorecka, E.; Pociecha, D. Phase transition in salt-free catanionic surfactant mixtures induced by temperature. Langmuir 2010, 26, 34–40.

[61]

Bai, Y. Y.; Yu, Q. L.; Zhang, J. Y.; Cai, M. R.; Liang, Y. M.; Zhou, F.; Liu, W. M. Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 2019, 7, 7654–7663.

[62]

Dieterich, S.; Stemmler, F.; Preisig, N.; Giesselmann, F. Micellar lyotropic nematic gels. Adv. Mater. 2021, 33, 2007340.

[63]

Evans, A. G.; Suo, Z.; Wang, R. Z.; Aksay, I. A.; He, M. Y.; Hutchinson, J. W. Model for the robust mechanical behavior of nacre. J. Mater. Res. 2001, 16, 2475–2484.

[64]

Liang, H. Y.; Bu, Y. F.; Zhang, J. Y.; Cao, Z. Y.; Liang, A. M. Graphene oxide film as solid lubricant. ACS Appl. Mater. Interfaces 2013, 5, 6369–6375.

[65]

Zhou, F.; Liang, Y. M.; Liu, W. M. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599.

[66]

Cai, M. R.; Yu, Q. L.; Liu, W. M.; Zhou, F. Ionic liquid lubricants: When chemistry meets tribology. Chem. Soc. Rev. 2020, 49, 7753–7818.

[67]

Abd El-Lateef, H. M.; Abo-Riya, M. A.; Tantawy, A. H. Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic Gemini surfactants on carbon steel pipelines in acid pickling processes. Corros. Sci. 2016, 108, 94–110.

[68]

Tantawy, A. H.; Soliman, K. A.; Abd El-Lateef, H. M. Novel synthesized cationic surfactants based on natural piper Nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5% NaCl:DFT, Monte Carlo simulations and experimental approaches. J. Clean. Prod. 2020, 250, 119510.

[69]

Zhang, Z. M.; Cheng, L.; Zhao, J.; Zhang, H.; Zhao, X. Y.; Liu, Y. H.; Bai, R. X.; Pan, H.; Yu, W.; Yan, X. Z. Muscle-mimetic synergistic covalent and supramolecular polymers: Phototriggered formation leads to mechanical performance boost. J. Am. Chem. Soc. 2021, 143, 902–911.

[70]

Ku, I. S. Y.; Reddyhoff, T.; Holmes, A. S.; Spikes, H. A. Wear of silicon surfaces in MEMS. Wear 2011, 271, 1050–1058.

[71]

Kim, H. S.; Crosby, A. J. Solvent-responsive surface via wrinkling instability. Adv. Mater. 2011, 23, 4188–4192.

[72]

Wu, Y.; Wei, Q. B.; Cai, M. R.; Zhou, F. Interfacial friction control. Adv. Mater. Interfaces 2015, 2, 1400392.

[73]

Zhai, L. Stimuli-responsive polymer films. Chem. Soc. Rev. 2013, 42, 7148–7160.

Nano Research
Pages 1533-1544
Cite this article:
Yang Y, Sun H, Zhang B, et al. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Research, 2023, 16(1): 1533-1544. https://doi.org/10.1007/s12274-022-4730-7
Topics:

877

Views

13

Crossref

14

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 13 May 2022
Revised: 27 June 2022
Accepted: 01 July 2022
Published: 16 July 2022
© Tsinghua University Press 2022
Return