Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triboelectric nanogenerator (TENG) can directly convert mechanical energy into electric energy. However, the triboelectric materials are limited to the triboelectric series. Here, for the first time, we choose the isostructural UiO-66-X (X = H, NH2, NO2, and Br) family as triboelectric materials to investigate the underlying relationships between different functional groups and the triboelectric performance of TENG. Unlike traditional triboelectric material organic polymers, metal–organic frameworks (MOFs) can be oriented design synthesis and functionalized with various functional groups. The results demonstrate that the largest output voltage and current are from UiO-66-NO2 TENG, and are about 23.79 V and 0.29 μA, which are 3.19 and 4.14 times over that of the UiO-66 TENG, respectively. The working mechanism of the MOF TENG was discussed in depth through experiments and theoretical calculations. This work proves a novel strategy to obtain high output properties by functionalized MOFs with large electron-withdrawing functional groups and promising guidance for the choice of high-efficiency triboelectric materials.
Zhang, S.; Guo, J. M.; Liu, L. L.; Ruan, H. R.; Kong, C. Y.; Yuan, X. B.; Zhang, B.; Gu, G. Q.; Cui, P.; Cheng, G. et al. The self-powered artificial synapse mechanotactile sensing system by integrating triboelectric plasma and gas-ionic-gated graphene transistor. Nano Energy 2022, 91, 106660.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Lin, Z. M.; Zhang, B. B.; Guo, H. Y.; Wu, Z. Y.; Zou, H. Y.; Yang, J.; Wang, Z. L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908.
Wang, X. C.; Sun, J.; Dong, L.; Lv, C.; Zhang, K.; Shang, Y.; Yang, T.; Wang, J.; Shan, C. X. Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy 2019, 58, 410–418.
Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.
Luo, J. J.; Xu, L.; Tang, W.; Jiang, T.; Fan, F. R.; Pang, Y. K.; Chen, L. B.; Zhang, Y.; Wang, Z. L. Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv. Energy Mater. 2018, 8, 1800889.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.
Wen, R. M.; Guo, J. M.; Yu, A. F.; Zhang, K.; Kou, J. Z.; Zhu, Y. X.; Zhang, Y.; Li, B. W.; Zhai, J. Y. Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite. Nano Energy 2018, 50, 140–147.
Han, S. D.; Liu, A. U.; Wei, Q.; Hu, J. X.; Pan, J.; Wang, G. M. Quadruple photoresponsive functionality in a crystalline hybrid material: Photochromism, photomodulated fluorescence, magnetism and nonlinear optical properties. Chem. Eur. J. 2021, 27, 7842–7846.
Rowsell, J. L. C.; Yaghi, O. M. Strategies for hydrogen storage in metal–organic frameworks. Angew. Chem., Int. Ed. 2005, 44, 4670–4679.
Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.
Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal–organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.
Chen, W.; Wu, C. S. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans. 2018, 47, 2114–2133.
Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.
Wen, R. M.; Guo, J. M.; Yu, A. F.; Zhai, J. Y.; Wang, Z. L. Humidity-resistive triboelectric nanogenerator fabricated using metal organic framework composite. Adv. Funct. Mater. 2019, 29, 1807655.
Khandelwal, G.; Raj, N. P. M. J.; Kim, S. J. Zeolitic imidazole framework: Metal–organic framework subfamily members for triboelectric nanogenerator. Adv. Funct. Mater. 2020, 30, 1910162.
Guo, Y. B.; Cao, Y. L.; Chen, Z. X.; Li, R.; Gong, W.; Yang, W. F.; Zhang, Q. H.; Wang, H. Z. Fluorinated metal–organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy 2020, 70, 104517.
Khandelwal, G.; Raj, N. P. M. J.; Kim, S. J. ZIF-62: A mixed linker metal–organic framework for triboelectric nanogenerators. J. Mater. Chem. A. 2020, 8, 17817–17825.
Chen, Z.; Cao, Y. L.; Yang, W. F.; An, L.; Fan, H. W.; Guo, Y. B. Embedding in-plane aligned MOF nanoflakes in silk fibroin for highly enhanced output performance of triboelectric nanogenerators. J. Mater. Chem. A 2022, 10, 799–807.
Khandelwal, G.; Raj, N. P. M. J.; Vivekananthan, V.; Kim, S. J. Biodegradable metal–organic framework MIL-88A for triboelectric nanogenerator. iScience 2021, 24, 102064.
Wang, Y. M.; Zhang, X. X.; Yang, D. Y.; Wu, L. T.; Zhang, J. J.; Lei, T. M.; Yang, R. S. Highly stable metal–organic framework UiO-66-NH2 for high-performance triboelectric nanogenerators. Nanotechnology 2022, 33, 065402.
Chen, J. S.; Shao, Z. C.; Zhao, Y. J.; Xue, X. J.; Song, H. Y.; Wu, Z. J.; Cui, S. W.; Zhang, L.; Huang, C.; Mi, L. W. et al. Metal-ion coupling in metal–organic framework materials regulating the output performance of a triboelectric nanogenerator. Inorg. Chem. 2022, 61, 2490–2498.
Li, Q.; An, X. H.; Qian, X. R. Methyl orange-doped polypyrrole promoting growth of ZIF-8 on cellulose fiber with tunable tribopolarity for triboelectric nanogenerator. Polymers 2022, 14, 332.
Zhang, Y. Y.; Wu, J. R.; Cui, S. W.; Wei, W. T.; Chen, W. H.; Pang, R.; Wu, Z. J.; Mi, L. W. Organosulfonate counteranions-a trapped coordination polymer as a high-output triboelectric nanogenerator material for self-powered anticorrosion. Chem. - Eur. J. 2020, 26, 584–591.
Hu, Y. J.; Wang, Y. L.; Tian, S. D.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. Performance-enhanced and washable triboelectric air filter based on polyvinylidene fluoride/UiO-66 composite nanofiber membrane. Macromol. Mater. Eng. 2021, 306, 2100128.
Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.
Zhao, S. J.; Huang, W. J.; Xie, J. K.; Liu, W.; Qu, Z.; Yan, N. Q. Mercury removal from flue gas using UiO-66-type metal–organic frameworks grafted with organic functionalities. Fuel 2021, 289, 119807.
Fei, H. H.; Pullen, S.; Wagner, A.; Ott, S.; Cohen, S. M. Functionalization of robust Zr(IV)-based metal–organic framework films via a postsynthetic ligand exchange. Chem. Commun. 2015, 51, 66–69.
Liao, X. Y.; Wang, X. Y.; Wang, F.; Yao, Y.; Lu, S. X. Ligand modified metal organic framework UiO-66: A highly efficient and stable catalyst for oxidative desulfurization. J. Inorg. Organomet. Polym. Mater. 2021, 31, 756–762.
Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J. M. r2SCAN-3c: A "Swiss army knife" composite electronic-structure method. J. Chem. Phys. 2021, 154, 064103.
Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170.
Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.