Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ta3N5 is regarded as a promising photocatalyst for solar water splitting because of its excellent visible light absorption characteristics and simple composition. Conventional Ta3N5 photocatalysts prepared from oxide precursors typically comprise aggregated polycrystalline particles with defects and grain boundaries that reduce the water oxidation activity of the material. In the present work, well-dispersed Ta3N5 nanoparticulate single crystals were synthesized via a mild nitridation process using pure Ta metal nanopowder or Ta nanopowder mixed with NaCl. The resulting high-quality Ta3N5 nanoparticles, after loading with an oxygen evolution cocatalyst, exhibited impressively high photocatalytic performance during O2 evolution from a sacrificial AgNO3 solution, with an apparent quantum yield of 9.4% at 420 nm. Our findings suggest a new approach to the facile fabrication of nanostructured single-crystal photocatalysts for efficient solar water splitting, based on the use of metal nanopowders.
Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7937.
Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.
Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.
Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B–H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 2018, 12, 5333–5340.
Wang, Y. O.; Suzuki, H.; Xie, J. J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. W. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 2018, 118, 5201–5241.
Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4. J. Mater. Chem. A 2015, 3, 11313–11319.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
Zhan, X. Q.; Fang, Z.; Li, B.; Zhang, H. T.; Xu, L. Y.; Hou, H. L.; Yang, W. Y. Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production. J. Mater. Chem. A 2021, 9, 27084–27094.
Zhan, X. Q.; Zheng, Y. P.; Li, B.; Fang Z.; Yang, H. L.; Zhang, H. T.; Xu, L. Y.; Shao, G.; Hou, H. L.; Yang, W. Y. Rationally designed Ta3N5/ZnIn2S4 1D/2D heterojunctions for boosting visible-light-driven hydrogen evolution. Chem. Eng. J. 2022, 431, 134053.
Qi, Y.; Chen, S. S.; Li, M. R.; Ding, Q.; Li, Z.; Cui, J. Y.; Dong, B. B.; Zhang, F. X.; Li, C. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem. Sci. 2017, 8, 437–443.
Hou, J. G.; Wu, Y. Z.; Cao, S. Y.; Liang, F.; Lin, Z. S.; Gao, Z. M.; Sun, L. C. In situ phase-induced spatial charge separation in core–shell oxynitride nanocube heterojunctions realizing robust solar water splitting. Adv. Energy Mater. 2017, 7, 1700171.
Nurlaela, E.; Ould-Chikh, S.; Llorens, I.; Hazemann, J. L.; Takanabe, K. Establishing efficient cobalt-based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst. Chem. Mater. 2015, 27, 5685–5694.
Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756–763.
Tabata, M.; Maeda, K.; Higashi, M.; Lu, D. L.; Takata, T.; Abe, R.; Domen, K. Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 2010, 26, 9161–9165.
Ma, S. S. K.; Maeda, K.; Hisatomi, T.; Tabata, M.; Kudo, A.; Domen, K. A redox-mediator-free solar-driven Z-scheme water-splitting system consisting of modified Ta3N5 as an oxygen-evolution photocatalyst. Chem.—Eur. J. 2013, 19, 7480–7486.
Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.
Zhong, M.; Hisatomi, T.; Sasaki, Y.; Suzuki, S.; Teshima, K.; Nakabayashi, M.; Shibata, N.; Nishiyama, H.; Katayama, M.; Yamada, T. et al. Highly active GaN-stabilized Ta3N5 thin-film photoanode for solar water oxidation. Angew. Chem., Int. Ed. 2017, 56, 4739–4743.
Ma, S. S. K.; Hisatomi, T.; Maeda, K.; Moriya, Y.; Domen, K. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J. Am. Chem. Soc. 2012, 134, 19993–19996.
Chen, S. S.; Shen, S.; Liu, G. J.; Qi, Y.; Zhang, F. X.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem., Int. Ed. 2015, 54, 3047–3051.
Suzuki, S.; Ando, R.; Matsui, Y.; Isechi, K.; Yubuta, K.; Teshima, K. Prismatic Ta3N5-composed spheres produced by self-sacrificial template-like conversion of Ta particles via Na2CO3 flux. CrystEngComm 2020, 22, 5122–5129.
Xiao, J. D.; Vequizo, J. J. M.; Hisatomi, T.; Rabeah, J.; Nakabayashi, M.; Wang, Z.; Xiao, Q.; Li, H. H.; Pan, Z. H.; Krause, M. et al. Simultaneously tuning the defects and surface properties of Ta3N5 nanoparticles by Mg-Zr codoping for significantly accelerated photocatalytic H2 evolution. J. Am. Chem. Soc. 2021, 143, 10059–10064.
Wang, D. A.; Hisatomi, T.; Takata, T.; Pan, C. S.; Katayama, M.; Kubota, J.; Domen, K. Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew. Chem., Int. Ed. 2013, 52, 11252–11256.
Zhang, F. X.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. J. Am. Chem. Soc. 2012, 134, 8348–8351.
Jadhav, S.; Hasegawa, S.; Hisatomi, T.; Wang, Z.; Seo, J.; Higashi, T.; Katayama, M.; Minegishi, T.; Takata, T.; Peralta-Hernández, J. M. et al. Efficient photocatalytic oxygen evolution using BaTaO2N obtained from nitridation of perovskite-type oxide. J. Mater. Chem. A 2020, 8, 1127–1130.