AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Giant quartic-phonon decay in PVD-grown α-MoO3 flakes

Yongsong Wang1,2Xiao Guo1,2Siwen You1,2Junjie Jiang2Zihan Wang2Fangping Ouyang2Han Huang1,2( )
School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China
School of Physics and Electronics, Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Giant quartic-phonon decay dominates the phonon anharmonicity in α-MoO3, which causes an ultrashort phonon lifetime of ~ 0.34 ps for stretching vibration phonon mode (SVPM) Ⅱ at 480 K and gives evidence of theoretically predicted ultralow κP in α-MoO3.

Abstract

Elementary excitations, such as in-plane anisotropic phonons and phonon polaritons (PhPs), in α-MoO3 play key roles in its outstanding physical properties like high carrier mobility and ultralow phonon thermal conductivity ( κP). Understanding the excitation mechanisms like phonon–phonon interactions is the most fundamental step to further applications. Here, we report on the systematic Raman investigations on phonon anisotropy and anharmonicity of representative Mo–O stretching vibration phonon modes (SVPMs) in physical vapor deposition (PVD)-grown α-MoO3 flakes. Polarizations of SVPMs verify the phonon anisotropy. The abnormal temperature dependence of SVPMs reveals that giant quartic-phonon decay dominates the phonon anharmonicity in α-MoO3. An ultrashort phonon lifetime of ~ 0.34 ps gives evidence of theoretically predicted ultralow κP in α-MoO3. Our findings give deep insight into the phonon–phonon interactions in α-MoO3 and provide an indicator for its extreme thermal device applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4734_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mater. 2012, 24, 5408–5427.

[2]

Ahn, C.; Cavalleri, A.; Georges, A.; Ismail-Beigi, S.; Millis, A. J.; Triscone, J. M. Designing and controlling the properties of transition metal oxide quantum materials. Nat. Mater. 2021, 20, 1462–1468.

[3]

Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.

[4]

Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huang, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.

[5]

Chen, F. M.; Liu, J. X.; Zheng, X. M.; Liu, L. H.; Xie, H. P.; Song, F.; Gao, Y. L.; Huang, H. Interfaces between MoOx and MoX2 (X = S, Se, and Te). Chin. Phys. B 2020, 29, 116802.

[6]

Guo, Y. Z.; Robertson, J. Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 2014, 105, 222110.

[7]

Zhang, W. B.; Qu, Q.; Lai, K. High-mobility transport anisotropy in few-layer MoO3 and its origin. ACS Appl. Mater. Interfaces 2017, 9, 1702–1709.

[8]

Shi, J.; Wu, D.; Zheng, X. M.; Xie, D. D.; Song, F.; Zhang, X. A.; Jiang, J.; Yuan, X. M.; Gao, Y. L.; Huang, H. From MoO2@MoS2 core–shell nanorods to MoS2 nanobelts. Phys. Status Solidi (B) 2018, 255, 1800254.

[9]

Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.

[10]

Choi, D. K.; Kim, D. H.; Lee, C. M.; Hafeez, H.; Sarker, S.; Yang, J. S.; Chae, H. J.; Jeong, G. W.; Choi, D. H.; Kim, T. W. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun. 2021, 12, 2864.

[11]

Arash, A.; Tawfik, S. A.; Spencer, M. J. S.; Kumar Jain, S.; Arash, S.; Mazumder, A.; Mayes, E.; Rahman, F.; Singh, M.; Bansal, V. et al. Electrically activated UV-A filters based on electrochromic MoO3−x. ACS Appl. Mater. Interfaces 2020, 12, 16997–17003.

[12]

Duan, J.; Álvarez-Pérez, G.; Tresguerres-Mata, A. I. F.; Taboada-Gutiérrez, J.; Voronin, K. V.; Bylinkin, A.; Chang, B.; Xiao, S.; Liu, S.; Edgar, J. H. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 2021, 12, 4325.

[13]

Sun, H. L.; Zhang, H.; Jing, X. X.; Hu, J. P.; Shen, K. C.; Liang, Z. F.; Hu, J. B.; Tian, Q. W.; Luo, M.; Zhu, Z. Y. et al. One-step synthesis of centimeter-size alpha-MoO3 with single crystallinity. Appl. Surf. Sci. 2019, 476, 789–795.

[14]

Molina-Mendoza, A. J.; Lado, J. L.; Island, J. O.; Niño, M. A.; Aballe, L.; Foerster, M.; Bruno, F. Y.; López-Moreno, A.; Vaquero-Garzon, L.; van der Zant, H. S. J. et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mater. 2016, 28, 4042–4051.

[15]

Ali, S. A.; Irfan, A.; Mazumder, A.; Balendhran, S.; Ahmed, T.; Walia, S.; Ulhaq, A. Helicity-selective Raman scattering from in-plane anisotropic α-MoO3. Appl. Phys. Lett. 2021, 119, 193104.

[16]

Zheng, B. J.; Wang, Z. G.; Chen, Y. F.; Zhang, W. L.; Li, X. S. Centimeter-sized 2D α-MoO3 single crystal: Growth, Raman anisotropy, and optoelectronic properties. 2D Mater. 2018, 5, 045011.

[17]

Gong, Y. N.; Zhao, Y. Y.; Zhou, Z. C.; Li, D. L.; Mao, H.; Bao, Q. L.; Zhang, Y. P.; Wang, G. P. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 2022, 10, 2200038.

[18]

Ma, W. L.; Alonso-González, P.; Li, S. J.; Nikitin, A. Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P. N.; Vélez, S. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562.

[19]

Chen, M. Y.; Lin, X.; Dinh, T. H.; Zheng, Z. R.; Shen, J. L.; Ma, Q.; Chen, H. S.; Jarillo-Herrero, P.; Dai, S. Y. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 2020, 19, 1307–1311.

[20]

Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213.

[21]

Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141.

[22]

Negishi, H.; Negishi, S.; Kuroiwa, Y.; Sato, N.; Aoyagi, S. Anisotropic thermal expansion of layered MoO3 crystals. Phys. Rev. B 2004, 69, 064111.

[23]

Tong, Z.; Dumitrică, T.; Frauenheim, T. Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett. 2021, 21, 4351–4356.

[24]

Kaiser, F.; Schmidt, M.; Grin, Y.; Veremchuk, I. Molybdenum oxides MoOx: Spark-plasma synthesis and thermoelectric properties at elevated temperature. Chem. Mater. 2020, 32, 2025–2035.

[25]

Xie, L.; Feng, J. H.; Li, R.; He, J. Q. First-principles study of anharmonic lattice dynamics in low thermal conductivity AgCrSe2: Evidence for a large resonant four-phonon scattering. Phys. Rev. Lett. 2020, 125, 245901.

[26]

Yang, X. L.; Feng, T. L.; Li, J.; Ruan, X. L. Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature. Phys. Rev. B 2019, 100, 245203.

[27]

Ravichandran, N. K.; Broido, D. Phonon–phonon interactions in strongly bonded solids: Selection rules and higher-order processes. Phys. Rev. X 2020, 10, 021063.

[28]

Sun, J.; Zhang, C. Z.; Yang, Z. H.; Shen, Y. H.; Hu, M.; Wang, Q. Four-phonon scattering effect and two-channel thermal transport in two-dimensional paraelectric SnSe. ACS Appl. Mater. Interfaces 2022, 14, 11493–11499.

[29]

Syrbu, N. N.; Stamov, I. G. The superposition of the lattice radiation and reflectivity spectra of MoO3 and PbMoO4 crystals. Cryst. Res. Technol. 1994, 29, 133–148.

[30]

Silveira, J. V.; Vieira, L. L.; Filho, J. M.; Sampaio, A. J. C.; Alves, O. L.; Souza Filho, A. G. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 2012, 43, 1407–1412.

[31]

Liu, J. X.; Shi, J.; Wu, D.; Zheng, X. M.; Chen, F. M.; Xiao, J. T.; Li, Y. Z.; Song, F.; Gao, Y. L.; Huang, H. Epitaxial growth of <010>-oriented MoO2 nanorods on m-sapphire. Curr. Appl. Phys. 2020, 20, 1130–1135.

[32]

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

[33]

Zheng, X. M.; Wei, Y. H.; Liu, J. X.; Wang, S. T.; Shi, J.; Yang, H.; Peng, G.; Deng, C. Y.; Luo, W.; Zhao, Y. et al. A homogeneous p-n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469–13476.

[34]

Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952–958.

[35]

Zheng, Y. L.; Li, Y.; Tang, X.; Wang, W. L.; Li, G. Q. A self-powered high-performance UV photodetector based on core–shell GaN/MoO3−x nanorod array heterojunction. Adv. Opt. Mater. 2020, 8, 2000197.

[36]

Liu, J. X.; Sun, K. L.; Zheng, X. M.; Wang, S. T.; Lian, S. C.; Deng, C. Y.; Xie, H. P.; Zhang, X. A.; Gao, Y. L.; Song, F. et al. Evolutions of morphology and electronic properties of few-layered MoS2 exposed to UVO. Results Phys. 2020, 19, 103634.

[37]

Wu, D.; Qi, D. Y.; Liu, J. D.; Wang, Z. X.; Hao, Q. Y.; Hong, G.; Liu, F.; Ouyang, F. P.; Zhang, W. J. Growth of centimeter-scale single crystal MoO3 ribbons for high performance ultraviolet photodetectors. Appl. Phys. Lett. 2021, 118, 243101.

[38]

Liu, D.; Lei, W. W.; Hao, J.; Liu, D. D.; Liu, B. B.; Wang, X.; Chen, X. H.; Cui, Q. L.; Zou, G. T.; Liu, J. et al. High-pressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513.

[39]

Py, M. A.; Maschke, K. Intra- and interlayer contributions to the lattice vibrations in MoO3. Physica B+C 1981, 105, 370–374.

[40]

Yu, S. J.; Jiang, Y.; Roberts, J. A.; Huber, M. A.; Yao, H. L.; Shi, X. J.; Bechtel, H. A.; Gilbert Corder, S. N.; Heinz, T. F.; Zheng, X. L. et al. Ultrahigh-quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons. ACS Nano 2022, 16, 3027–3035.

[41]

Wen, M. Q.; Chen, X. X.; Zheng, Z. B.; Deng, S. Z.; Li, Z. B.; Wang, W. L.; Chen, H. J. In-plane anisotropic Raman spectroscopy of van der Waals α-MoO3. J. Phys. Chem. C 2021, 125, 765–773.

[42]

Phaneuf-L’Heureux, A. L.; Favron, A.; Germain, J. F.; Lavoie, P.; Desjardins, P.; Leonelli, R.; Martel, R.; Francoeur, S. Polarization-resolved Raman study of bulk-like and Davydov-induced vibrational modes of exfoliated black phosphorus. Nano Lett. 2016, 16, 7761–7767.

[43]

Porezag, D.; Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830–7836.

[44]

Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423–482.

[45]

Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.

[46]

Wang, Y. S.; Chen, F. M.; Guo, X.; Liu, J. X.; Jiang, J. J.; Zheng, X. M.; Wang, Z. H.; Al-Makeen, M. M.; Ouyang, F. P.; Xia, Q. L. et al. In-plane phonon anisotropy and anharmonicity in exfoliated natural black arsenic. J. Phys. Chem. Lett. 2021, 12, 10753–10760.

[47]

Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601–12607.

[48]

Liu, F.; Parajuli, P.; Rao, R.; Wei, P. C.; Karunarathne, A.; Bhattacharya, S.; Podila, R.; He, J.; Maruyama, B.; Priyadarshan, G. et al. Phonon anharmonicity in single-crystalline SnSe. Phys. Rev. B 2018, 98, 224309.

[49]

Zhu, S. Q.; Zheng, W. Temperature-dependent phonon shifts in van der Waals crystals. J. Phys. Chem. Lett. 2021, 12, 5261–5270.

[50]

Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 2007, 99, 176802.

[51]

Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934.

[52]

Samara, G. A.; Peercy, P. S. Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile). Phys. Rev. B 1973, 7, 1131–1148.

[53]

Tristant, D.; Cupo, A.; Ling, X.; Meunier, V. Phonon anharmonicity in few-layer black phosphorus. ACS Nano 2019, 13, 10456–10468.

[54]

Postmus, C.; Ferraro, J. R.; Mitra, S. S. Pressure dependence of infrared eigenfrequencies of KCl and KBr. Phys. Rev. 1968, 174, 983–987.

[55]

Popuri, S. R.; Pollet, M.; Decourt, R.; Viciu, M. L.; Bos, J. W. G. Evidence for hard and soft substructures in thermoelectric SnSe. Appl. Phys. Lett. 2017, 110, 253903.

[56]

Julien, C.; Yebka, B.; Nazri, G. A. Temperature dependence of the vibrational modes of MoO3. Mater. Sci. Eng.: B 1996, 38, 65–71.

[57]

Guo, X.; Tian, Q. W.; Wang, Y. S.; Liu, J. X.; Jia, G. P.; Dou, W. D.; Song, F.; Zhang, L. J.; Qin, Z. H.; Huang, H. Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 2022, 190, 312–318.

[58]

Wertheim, G. K.; Butler, M. A.; West, K. W.; Buchanan, D. N. E. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974, 45, 1369–1371.

[59]

Cuscó, R.; Artús, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B 2018, 97, 155435.

[60]

Liu, F. J.; Hu, L. Y.; Karakaya, M.; Puneet, P.; Rao, R.; Podila, R.; Bhattacharya, S.; Rao, A. M. A micro-Raman study of exfoliated few-layered n-type Bi2Te2.7Se0.3. Sci. Rep. 2017, 7, 16535.

[61]

Lu, Y.; Sun, T.; Zhang, D. B. Lattice anharmonicity, phonon dispersion, and thermal conductivity of PbTe studied by the phonon quasiparticle approach. Phys. Rev. B 2018, 97, 174304.

Nano Research
Pages 1115-1122
Cite this article:
Wang Y, Guo X, You S, et al. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano Research, 2023, 16(1): 1115-1122. https://doi.org/10.1007/s12274-022-4734-3
Topics:

976

Views

11

Crossref

11

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 28 April 2022
Revised: 06 June 2022
Accepted: 01 July 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return