Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Elementary excitations, such as in-plane anisotropic phonons and phonon polaritons (PhPs), in α-MoO3 play key roles in its outstanding physical properties like high carrier mobility and ultralow phonon thermal conductivity (
Meyer, J.; Hamwi, S.; Kröger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mater. 2012, 24, 5408–5427.
Ahn, C.; Cavalleri, A.; Georges, A.; Ismail-Beigi, S.; Millis, A. J.; Triscone, J. M. Designing and controlling the properties of transition metal oxide quantum materials. Nat. Mater. 2021, 20, 1462–1468.
Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.
Xie, Q. L.; Zheng, X. M.; Wu, D.; Chen, X. L.; Shi, J.; Han, X. T.; Zhang, X. A.; Peng, G.; Gao, Y. L.; Huang, H. High electrical conductivity of individual epitaxially grown MoO2 nanorods. Appl. Phys. Lett. 2017, 111, 093505.
Chen, F. M.; Liu, J. X.; Zheng, X. M.; Liu, L. H.; Xie, H. P.; Song, F.; Gao, Y. L.; Huang, H. Interfaces between MoOx and MoX2 (X = S, Se, and Te). Chin. Phys. B 2020, 29, 116802.
Guo, Y. Z.; Robertson, J. Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 2014, 105, 222110.
Zhang, W. B.; Qu, Q.; Lai, K. High-mobility transport anisotropy in few-layer MoO3 and its origin. ACS Appl. Mater. Interfaces 2017, 9, 1702–1709.
Shi, J.; Wu, D.; Zheng, X. M.; Xie, D. D.; Song, F.; Zhang, X. A.; Jiang, J.; Yuan, X. M.; Gao, Y. L.; Huang, H. From MoO2@MoS2 core–shell nanorods to MoS2 nanobelts. Phys. Status Solidi (B) 2018, 255, 1800254.
Mai, L. Q.; Hu, B.; Chen, W.; Qi, Y. Y.; Lao, C. S.; Yang, R. S.; Dai, Y.; Wang, Z. L. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 2007, 19, 3712–3716.
Choi, D. K.; Kim, D. H.; Lee, C. M.; Hafeez, H.; Sarker, S.; Yang, J. S.; Chae, H. J.; Jeong, G. W.; Choi, D. H.; Kim, T. W. et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun. 2021, 12, 2864.
Arash, A.; Tawfik, S. A.; Spencer, M. J. S.; Kumar Jain, S.; Arash, S.; Mazumder, A.; Mayes, E.; Rahman, F.; Singh, M.; Bansal, V. et al. Electrically activated UV-A filters based on electrochromic MoO3−x. ACS Appl. Mater. Interfaces 2020, 12, 16997–17003.
Duan, J.; Álvarez-Pérez, G.; Tresguerres-Mata, A. I. F.; Taboada-Gutiérrez, J.; Voronin, K. V.; Bylinkin, A.; Chang, B.; Xiao, S.; Liu, S.; Edgar, J. H. et al. Planar refraction and lensing of highly confined polaritons in anisotropic media. Nat. Commun. 2021, 12, 4325.
Sun, H. L.; Zhang, H.; Jing, X. X.; Hu, J. P.; Shen, K. C.; Liang, Z. F.; Hu, J. B.; Tian, Q. W.; Luo, M.; Zhu, Z. Y. et al. One-step synthesis of centimeter-size alpha-MoO3 with single crystallinity. Appl. Surf. Sci. 2019, 476, 789–795.
Molina-Mendoza, A. J.; Lado, J. L.; Island, J. O.; Niño, M. A.; Aballe, L.; Foerster, M.; Bruno, F. Y.; López-Moreno, A.; Vaquero-Garzon, L.; van der Zant, H. S. J. et al. Centimeter-scale synthesis of ultrathin layered MoO3 by van der Waals epitaxy. Chem. Mater. 2016, 28, 4042–4051.
Ali, S. A.; Irfan, A.; Mazumder, A.; Balendhran, S.; Ahmed, T.; Walia, S.; Ulhaq, A. Helicity-selective Raman scattering from in-plane anisotropic α-MoO3. Appl. Phys. Lett. 2021, 119, 193104.
Zheng, B. J.; Wang, Z. G.; Chen, Y. F.; Zhang, W. L.; Li, X. S. Centimeter-sized 2D α-MoO3 single crystal: Growth, Raman anisotropy, and optoelectronic properties. 2D Mater. 2018, 5, 045011.
Gong, Y. N.; Zhao, Y. Y.; Zhou, Z. C.; Li, D. L.; Mao, H.; Bao, Q. L.; Zhang, Y. P.; Wang, G. P. Polarized Raman scattering of in-plane anisotropic phonon modes in α-MoO3. Adv. Opt. Mater. 2022, 10, 2200038.
Ma, W. L.; Alonso-González, P.; Li, S. J.; Nikitin, A. Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P. N.; Vélez, S. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557–562.
Chen, M. Y.; Lin, X.; Dinh, T. H.; Zheng, Z. R.; Shen, J. L.; Ma, Q.; Chen, H. S.; Jarillo-Herrero, P.; Dai, S. Y. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 2020, 19, 1307–1311.
Hu, G. W.; Ou, Q. D.; Si, G. Y.; Wu, Y. J.; Wu, J.; Dai, Z. G.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q. L. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213.
Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141.
Negishi, H.; Negishi, S.; Kuroiwa, Y.; Sato, N.; Aoyagi, S. Anisotropic thermal expansion of layered MoO3 crystals. Phys. Rev. B 2004, 69, 064111.
Tong, Z.; Dumitrică, T.; Frauenheim, T. Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett. 2021, 21, 4351–4356.
Kaiser, F.; Schmidt, M.; Grin, Y.; Veremchuk, I. Molybdenum oxides MoOx: Spark-plasma synthesis and thermoelectric properties at elevated temperature. Chem. Mater. 2020, 32, 2025–2035.
Xie, L.; Feng, J. H.; Li, R.; He, J. Q. First-principles study of anharmonic lattice dynamics in low thermal conductivity AgCrSe2: Evidence for a large resonant four-phonon scattering. Phys. Rev. Lett. 2020, 125, 245901.
Yang, X. L.; Feng, T. L.; Li, J.; Ruan, X. L. Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature. Phys. Rev. B 2019, 100, 245203.
Ravichandran, N. K.; Broido, D. Phonon–phonon interactions in strongly bonded solids: Selection rules and higher-order processes. Phys. Rev. X 2020, 10, 021063.
Sun, J.; Zhang, C. Z.; Yang, Z. H.; Shen, Y. H.; Hu, M.; Wang, Q. Four-phonon scattering effect and two-channel thermal transport in two-dimensional paraelectric SnSe. ACS Appl. Mater. Interfaces 2022, 14, 11493–11499.
Syrbu, N. N.; Stamov, I. G. The superposition of the lattice radiation and reflectivity spectra of MoO3 and PbMoO4 crystals. Cryst. Res. Technol. 1994, 29, 133–148.
Silveira, J. V.; Vieira, L. L.; Filho, J. M.; Sampaio, A. J. C.; Alves, O. L.; Souza Filho, A. G. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 2012, 43, 1407–1412.
Liu, J. X.; Shi, J.; Wu, D.; Zheng, X. M.; Chen, F. M.; Xiao, J. T.; Li, Y. Z.; Song, F.; Gao, Y. L.; Huang, H. Epitaxial growth of <010>-oriented MoO2 nanorods on m-sapphire. Curr. Appl. Phys. 2020, 20, 1130–1135.
Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.
Zheng, X. M.; Wei, Y. H.; Liu, J. X.; Wang, S. T.; Shi, J.; Yang, H.; Peng, G.; Deng, C. Y.; Luo, W.; Zhao, Y. et al. A homogeneous p-n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469–13476.
Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952–958.
Zheng, Y. L.; Li, Y.; Tang, X.; Wang, W. L.; Li, G. Q. A self-powered high-performance UV photodetector based on core–shell GaN/MoO3−x nanorod array heterojunction. Adv. Opt. Mater. 2020, 8, 2000197.
Liu, J. X.; Sun, K. L.; Zheng, X. M.; Wang, S. T.; Lian, S. C.; Deng, C. Y.; Xie, H. P.; Zhang, X. A.; Gao, Y. L.; Song, F. et al. Evolutions of morphology and electronic properties of few-layered MoS2 exposed to UVO. Results Phys. 2020, 19, 103634.
Wu, D.; Qi, D. Y.; Liu, J. D.; Wang, Z. X.; Hao, Q. Y.; Hong, G.; Liu, F.; Ouyang, F. P.; Zhang, W. J. Growth of centimeter-scale single crystal MoO3 ribbons for high performance ultraviolet photodetectors. Appl. Phys. Lett. 2021, 118, 243101.
Liu, D.; Lei, W. W.; Hao, J.; Liu, D. D.; Liu, B. B.; Wang, X.; Chen, X. H.; Cui, Q. L.; Zou, G. T.; Liu, J. et al. High-pressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513.
Py, M. A.; Maschke, K. Intra- and interlayer contributions to the lattice vibrations in MoO3. Physica B+C 1981, 105, 370–374.
Yu, S. J.; Jiang, Y.; Roberts, J. A.; Huber, M. A.; Yao, H. L.; Shi, X. J.; Bechtel, H. A.; Gilbert Corder, S. N.; Heinz, T. F.; Zheng, X. L. et al. Ultrahigh-quality infrared polaritonic resonators based on bottom-up-synthesized van der Waals nanoribbons. ACS Nano 2022, 16, 3027–3035.
Wen, M. Q.; Chen, X. X.; Zheng, Z. B.; Deng, S. Z.; Li, Z. B.; Wang, W. L.; Chen, H. J. In-plane anisotropic Raman spectroscopy of van der Waals α-MoO3. J. Phys. Chem. C 2021, 125, 765–773.
Phaneuf-L’Heureux, A. L.; Favron, A.; Germain, J. F.; Lavoie, P.; Desjardins, P.; Leonelli, R.; Martel, R.; Francoeur, S. Polarization-resolved Raman study of bulk-like and Davydov-induced vibrational modes of exfoliated black phosphorus. Nano Lett. 2016, 16, 7761–7767.
Porezag, D.; Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830–7836.
Loudon, R. The Raman effect in crystals. Adv. Phys. 1964, 13, 423–482.
Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.
Wang, Y. S.; Chen, F. M.; Guo, X.; Liu, J. X.; Jiang, J. J.; Zheng, X. M.; Wang, Z. H.; Al-Makeen, M. M.; Ouyang, F. P.; Xia, Q. L. et al. In-plane phonon anisotropy and anharmonicity in exfoliated natural black arsenic. J. Phys. Chem. Lett. 2021, 12, 10753–10760.
Xu, X. L.; Song, Q. J.; Wang, H. F.; Li, P.; Zhang, K.; Wang, Y. L.; Yuan, K.; Yang, Z. C.; Ye, Y.; Dai, L. In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 2017, 9, 12601–12607.
Liu, F.; Parajuli, P.; Rao, R.; Wei, P. C.; Karunarathne, A.; Bhattacharya, S.; Podila, R.; He, J.; Maruyama, B.; Priyadarshan, G. et al. Phonon anharmonicity in single-crystalline SnSe. Phys. Rev. B 2018, 98, 224309.
Zhu, S. Q.; Zheng, W. Temperature-dependent phonon shifts in van der Waals crystals. J. Phys. Chem. Lett. 2021, 12, 5261–5270.
Bonini, N.; Lazzeri, M.; Marzari, N.; Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 2007, 99, 176802.
Balkanski, M.; Wallis, R. F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928–1934.
Samara, G. A.; Peercy, P. S. Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO2 (rutile). Phys. Rev. B 1973, 7, 1131–1148.
Tristant, D.; Cupo, A.; Ling, X.; Meunier, V. Phonon anharmonicity in few-layer black phosphorus. ACS Nano 2019, 13, 10456–10468.
Postmus, C.; Ferraro, J. R.; Mitra, S. S. Pressure dependence of infrared eigenfrequencies of KCl and KBr. Phys. Rev. 1968, 174, 983–987.
Popuri, S. R.; Pollet, M.; Decourt, R.; Viciu, M. L.; Bos, J. W. G. Evidence for hard and soft substructures in thermoelectric SnSe. Appl. Phys. Lett. 2017, 110, 253903.
Julien, C.; Yebka, B.; Nazri, G. A. Temperature dependence of the vibrational modes of MoO3. Mater. Sci. Eng.: B 1996, 38, 65–71.
Guo, X.; Tian, Q. W.; Wang, Y. S.; Liu, J. X.; Jia, G. P.; Dou, W. D.; Song, F.; Zhang, L. J.; Qin, Z. H.; Huang, H. Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 2022, 190, 312–318.
Wertheim, G. K.; Butler, M. A.; West, K. W.; Buchanan, D. N. E. Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 1974, 45, 1369–1371.
Cuscó, R.; Artús, L.; Edgar, J. H.; Liu, S.; Cassabois, G.; Gil, B. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride. Phys. Rev. B 2018, 97, 155435.
Liu, F. J.; Hu, L. Y.; Karakaya, M.; Puneet, P.; Rao, R.; Podila, R.; Bhattacharya, S.; Rao, A. M. A micro-Raman study of exfoliated few-layered n-type Bi2Te2.7Se0.3. Sci. Rep. 2017, 7, 16535.
Lu, Y.; Sun, T.; Zhang, D. B. Lattice anharmonicity, phonon dispersion, and thermal conductivity of PbTe studied by the phonon quasiparticle approach. Phys. Rev. B 2018, 97, 174304.