Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As significant biocatalysts, natural enzymes have exhibited a vast range of applications in biocatalytic reactions. However, the “always-on” natural enzyme activity is not beneficial for the regulation of catalytic processes, which limits their bio-applications. Recently, it has been extensively reported that various organic artificial enzymes exhibit prominent absorption and controlled activity under illumination, which not only creates a series of light-responsive catalytic platforms but also plays a key role in biosensing and biomedical research. To provide novel ideas for the design of artificial enzymes, we conduct this review to highlight the recent progress of light-responsive organic artificial enzymes (LOA-Enz). The specific photoresponse mechanism and various bio-applications of LOA-Enz are also presented in detail. Furthermore, the remaining challenges and future perspectives in this field are discussed.
Haseloff, J.; Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 1988, 334, 585–591.
Breaker, R. R. DNA enzymes. Nat. Biotechnol. 1997, 15, 427–431.
Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int. 2013, 2013, 329121.
Kuah, E.; Toh, S.; Yee, J.; Ma, Q.; Gao, Z. Q. Enzyme mimics: Advances and applications. Chem.—Eur. J. 2016, 22, 8404–8430.
Bjerre, J.; Rousseau, C.; Marinescu, L.; Bols, M. Artificial enzymes, “chemzymes”: Current state and perspectives. Appl. Microbiol. Biotechnol. 2008, 81, 1–11.
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.
Raynal, M.; Ballester, P.; Vidal-Ferran, A.; Van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787.
Shoda, S. I.; Uyama, H.; Kadokawa, J. I.; Kimura, S.; Kobayashi, S. Enzymes as green catalysts for precision macromolecular synthesis. Chem. Rev. 2016, 116, 2307–2413.
Palomo, J. M. Artificial enzymes with multiple active sites. Curr. Opin. Green Sustain. Chem. 2021, 29, 100452.
Wang, T. T.; Fan, X. T.; Hou, C. X.; Liu, J. Q. Design of artificial enzymes by supramolecular strategies. Curr. Opin. Struct. Biol. 2018, 51, 19–27.
Cao, C. Y.; Zou, H.; Yang, N.; Li, H.; Cai, Y.; Song, X. J.; Shao, J. J.; Chen, P.; Mou, X. Z.; Wang, W. J. et al. Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv. Mater. 2021, 33, 2106996.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Du, Z.; Li, M.; Ren, J. S.; Qu, X. G. Current strategies for modulating Aβ aggregation with multifunctional agents. Acc. Chem. Res. 2021, 54, 2172–2184.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Wu, S. H.; Zhang, J. Y.; Wu, P. Photo-modulated nanozymes for biosensing and biomedical applications. Anal. Methods 2019, 11, 5081–5088.
Zhang, J. Y.; Liu, J. W. Light-activated nanozymes: Catalytic mechanisms and applications. Nanoscale 2020, 12, 2914–2923.
Seel, C. J.; Gulder, T. Biocatalysis fueled by light: On the versatile combination of photocatalysis and enzymes. ChemBioChem 2019, 20, 1871–1897.
Liu, Y. F.; Wang, X. Y.; Wei, H. Light-responsive nanozymes for biosensing. Analyst 2020, 145, 4388–4397.
Peng, F.; Setyawati, M. I.; Tee, J. K.; Ding, X. G.; Wang, J. P.; Nga, M. E.; Ho, H. K.; Leong, D. T. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 2019, 14, 279–286.
Zhang, X. J.; Lin, S. J.; Liu, S. W.; Tan, X. L.; Dai, Y.; Xia, F. Advances in organometallic/organic nanozymes and their applications. Coord. Chem. Rev. 2021, 429, 213652.
Zozulia, O.; Dolan, M. A.; Korendovych, I. V. Catalytic peptide assemblies. Chem. Soc. Rev. 2018, 47, 3621–3639.
Liu, L.; Shi, Y.; Li, M. L.; Sun, C. Q.; Long, Y. J.; Zheng, H. Z. Effect of carboxyl and amino groups in fluorescein molecules on their peroxidase-like activity. Mol. Catal. 2017, 439, 186–192.
Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem., Int. Ed. 2015, 54, 7176–7180.
Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.
Wang, C. H.; Wang, H. Y.; Xu, B. L.; Liu, H. Y. Photo-responsive nanozymes: Mechanism, activity regulation, and biomedical applications. View 2021, 2, 20200045.
Liu, L.; Shi, Y.; Yang, Y. F.; Li, M. L.; Long, Y. J.; Huang, Y. M.; Zheng, H. Z. Fluorescein as an artificial enzyme to mimic peroxidase. Chem. Commun. 2016, 52, 13912–13915.
Li, L.; Cao, S. J.; Wu, Z. H.; Guo, R. Q.; Xie, L.; Wang, L. Y.; Tang, Y. J.; Li, Q.; Luo, X. L.; Ma, L. et al. Modulating electron transfer in vanadium-based artificial enzymes for enhanced ROS-catalysis and disinfection. Adv. Mater. 2022, 34, 2108646.
Karim, N.; Singh, M.; Weerathunge, P.; Bian, P. J.; Zheng, R. K.; Dekiwadia, C.; Ahmed, T.; Walia, S.; Gaspera, E. D.; Singh, S. et al. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl. Nano Mater. 2018, 1, 1694–1704.
Li, G. R.; Tian, W. C.; Zhong, C.; Yang, Y. X.; Lin, Z. A. Construction of donor-acceptor heteroporous covalent organic frameworks as photoregulated oxidase-like nanozymes for sensing signal amplification. ACS Appl. Mater. Interfaces 2022, 14, 21750–21757.
Liu, J.; Cui, Y. Y.; Pan, Y. Y.; Chen, Z. J.; Jia, T.; Li, C. L.; Wang, Y. Donor-acceptor molecule based high-performance photothermal organic material for efficient water purification and electricity generation. Angew. Chem., Int. Ed. 2022, 61, e202117087.
Wang, S.; Wang, M. K.; Liu, Y. C.; Meng, X. Y.; Ye, Y.; Song, X. W.; Liang, Z. Q. Novel D-π-A conjugated microporous polymer as visible light-driven oxidase mimic for efficient colorimetric detection of glutathione. Sens. Actuators B: Chem. 2021, 326, 128808.
Jiang, J. X.; Su, F. B.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H. J.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z. et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem., Int. Ed. 2007, 46, 8574–8578.
Tan, H. N.; Zhao, Y. X.; Xu, X. T.; Sun, Y.; Li, Y. H.; Du, J. X. A covalent triazine framework as an oxidase mimetic in the luminol chemiluminescence system: Application to the determination of the antioxidant rutin. Microchim. Acta 2020, 187, 42.
Xiong, Y. H.; Su, L. J.; He, X. C.; Duan, Z. H.; Zhang, Z.; Chen, Z. L.; Xie, W.; Zhu, D. J.; Luo, Y. H. Colorimetric determination of copper ions based on regulation of the enzyme-mimicking activity of covalent triazine frameworks. Sens. Actuators B: Chem. 2017, 253, 384–391.
Shao, W.; Wei, Q. L.; Wang, S. F.; Li, F. Y.; Wu, J. H.; Ren, J. F.; Cao, F. Y.; Liao, H. W.; Gao, J. Q.; Zhou, M. et al. Molecular engineering of D-A-D conjugated small molecule nanoparticles for high performance NIR-II photothermal therapy. Mater. Horiz. 2020, 7, 1379–1386.
Jin, P.; Niu, X. Y.; Zhang, F.; Dong, K.; Dai, H. X.; Zhang, H. G.; Wang, W. F.; Chen, H. L.; Chen, X. G. Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as a oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Appl. Mater. Interfaces 2020, 12, 20414–20422.
He, J.; Xu, F. J.; Hu, J.; Wang, S. L.; Hou, X. D.; Long, Z. Covalent triazine framework-1: A novel oxidase and peroxidase mimic. Microchem. J. 2017, 135, 91–99.
Zhang, P.; Wang, T.; Chang, X. X.; Gong, J. L. Effective charge carrier utilization in photocatalytic conversions. Acc. Chem. Res. 2016, 49, 911–921.
Meng, X. G.; Liu, L. Q.; Ouyang, S. X.; Xu, H.; Wang, D. F.; Zhao, N. Q.; Ye, J. H. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803.
Xia, Y. K.; He, W. H.; Li, J.; Zeng, L. P.; Chen, T. T.; Liao, Y. J.; Sun, W. M.; Lan, J. M.; Zhuo, S. M.; Zhang, J. et al. Acridone derivate simultaneously featuring multiple functions and its applications. Anal. Chem. 2019, 91, 8406–8414.
Feng, G. X.; Zhang, G. Q.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234.
Dai, H. M.; Shen, Q.; Shao, J. J.; Wang, W. J.; Gao, F.; Dong, X. C. Small molecular NIR-II fluorophores for cancer phototheranostics. Innovation 2021, 2, 100082.
Li, J. C.; Xie, C.; Huang, J. G.; Jiang, Y. Y.; Miao, Q. Q.; Pu, K. Y. Semiconducting polymer nanoenzymes with photothermic activity for enhanced cancer therapy. Angew. Chem., Int. Ed. 2018, 57, 3995–3998.
Bandara, H. M. D.; Burdette, S. C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825.
Wang, F. M.; Ju, E. G.; Guan, Y. J.; Ren, J. S.; Qu, X. G. Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small 2017, 13, 1603051.
Wang, F. M.; Zhang, Y.; Du, Z.; Ren, J. S.; Qu, X. G. Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat. Commun. 2018, 9, 1209.
Zhao, Y. N.; Lei, B. Q.; Wang, M. F.; Wu, S. T.; Qi, W.; Su, R. X.; He, Z. M. A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity. J. Mater. Chem. B 2018, 6, 2444–2449.
Song, Y. J.; Wei, W. L.; Qu, X. G. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236.
Li, M. L.; Liu, L.; Shi, Y.; Yang, Y. F.; Zheng, H. Z.; Long, Y. J. Dichlorofluorescein as a peroxidase mimic and its application to glucose detection. New J. Chem. 2017, 41, 7578–7582.
Du, J. Y.; Wang, J. H.; Huang, W.; Deng, Y. Q.; He, Y. Visible light-activatable oxidase mimic of 9-mesityl-10-methylacridinium ion for colorimetric detection of biothiols and logic operations. Anal. Chem. 2018, 90, 9959–9965.
Lin, Z.; Luo, S.; Xu, D. F.; Liu, S. J.; Wu, N. M.; Yao, W. S.; Zhang, X. M.; Zheng, L. L.; Lin, X. H. Silica-polydopamine hybrids as light-induced oxidase mimics for colorimetric detection of pyrophosphate. Analyst 2020, 145, 424–433.
Xia, Y. K.; Chen, T. T.; Zhang, L.; Zhang, X. L.; Shi, W. H.; Chen, G. Y.; Chen, W. Q.; Lan, J. M.; Li, C. Y.; Sun, W. M. et al. Colorimetric detection of exosomal microRNA through switching the visible-light-induced oxidase mimic activity of acridone derivate. Biosens. Bioelectron. 2021, 173, 112834.
Zhang, T.; He, W. H.; Song, X. D.; Wu, D. Z.; Xia, Y. K.; Liu, Y.; Wu, L. Z.; Sun, W. M.; Lin, F. F.; Chen, J. H. A colorimetric sensor for acid phosphatase activity detection based on acridone derivative as visible-light-stimulated oxidase mimic. Anal. Chim. Acta 2021, 1155, 338357.
Dou, Y.; Yang, R.; Xiao, Y.; Wu, J.; Qu, L. B.; Sun, Y. Q.; Li, Z. H. Teaching a fluorophore new tricks: Exploiting the light-driven organic oxidase nanozyme properties of thiazolothiazole for highly sensitive biomedical detection. Sens. Actuators B: Chem. 2022, 354, 131226.
Song, Y. J.; Qu, K. K.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.
Li, G. R.; Ma, W. D.; Yang, Y. X.; Zhong, C.; Huang, H.; Ouyang, D.; He, Y. T.; Tian, W. C.; Lin, J.; Lin, Z. A. Nanoscale covalent organic frameworks with donor-acceptor structures as highly efficient light-responsive oxidase-like mimics for colorimetric detection of glutathione. ACS Appl. Mater. Interfaces 2021, 13, 49482–49489.
Liu, J. W.; Luo, Y.; Wang, Y. M.; Duan, L. Y.; Jiang, J. H.; Yu, R. Q. Graphitic carbon nitride nanosheets-based ratiometric fluorescent probe for highly sensitive detection of H2O2 and glucose. ACS Appl. Mater. Interfaces 2016, 8, 33439–33445.
Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.
Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.
Farhadi, S. A.; Bracho-Sanchez, E.; Freeman, S. L.; Keselowsky, B. G.; Hudalla, G. A. Enzymes as immunotherapeutics. Bioconjugate Chem. 2018, 29, 649–656.
Zhong, Y. N.; Zhang, J. G.; Zhang, J. M.; Hou, Y.; Chen, E. P.; Huang, D. C.; Chen, W.; Haag, R. Tumor microenvironment-activatable nanoenzymes for mechanical remodeling of extracellular matrix and enhanced tumor chemotherapy. Adv. Funct. Mater. 2021, 31, 2007544.
Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.
Chen, D. P.; Tang, Q. Y.; Zou, J. H.; Yang, X. Y.; Huang, W.; Zhang, Q.; Shao, J. J.; Dong, X. C. pH-responsive PEG-doxorubicin-encapsulated aza-bodipy nanotheranostic agent for imaging-guided synergistic cancer therapy. Adv. Healthc. Mater. 2018, 7, 1701272.
Zeng, Z. L.; Zhang, C.; Li, J. C.; Cui, D.; Jiang, Y. Y.; Pu, K. Y. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv. Mater. 2021, 33, 2007247.
Zhang, J. Y.; Lu, X. M.; Tang, D. D.; Wu, S. H.; Hou, X. D.; Liu, J. W.; Wu, P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 40808–40814.
Haydell, M. W.; Centola, M.; Adam, V.; Valero, J.; Famulok, M. Temporal and reversible control of a DNAzyme by orthogonal photoswitching. J. Am. Chem. Soc. 2018, 140, 16868–16872.
Yurke, B.; Turberfield, A. J.; Mills, A. P. Jr.; Simmel, F. C.; Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 2000, 406, 605–608.
Nanda, V.; Koder, R. L. Designing artificial enzymes by intuition and computation. Nat. Chem. 2010, 2, 15–24.
Jain, A.; Shin, Y.; Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 2016, 1, 15004.
Liu, L.; Sun, C. Q.; Yang, J.; Shi, Y.; Long, Y. J.; Zheng, H. Z. Fluorescein as a visible-light-induced oxidase mimic for signal-amplified colorimetric assay of carboxylesterase by an enzymatic cascade reaction. Chem.—Eur. J. 2018, 24, 6148–6154.
Zhang, X. F.; Huang, C. P.; Xu, S. X.; Chen, J. B.; Zeng, Y.; Wu, P.; Hou, X. D. Photocatalytic oxidation of TMB with the double stranded DNA-SYBR Green I complex for label-free and universal colorimetric bioassay. Chem. Commun. 2015, 51, 14465–14468.
Deng, X.; Fang, Y. S.; Lin, S.; Cheng, Q.; Liu, Q. Y.; Zhang, X. M. Porphyrin-based porous organic frameworks as a biomimetic catalyst for highly efficient colorimetric immunoassay. ACS Appl. Mater. Interfaces 2017, 9, 3514–3523.
Zhang, X. J.; Lin, S. J.; Wang, Y. C.; Xia, F.; Dai, Y. Cofactor-free organic nanozyme with assembly-induced catalysis and light-regulated activity. Chem. Eng. J. 2021, 426, 130855.
Zhang, L.; Yang, G. P.; Xiao, S. J.; Tan, Q. G.; Zheng, Q. Q.; Liang, R. P.; Qiu, J. D. Facile construction of covalent organic framework nanozyme for colorimetric detection of uranium. Small 2021, 17, 2102944.
Yuan, M. Y.; Xiao, S. J.; Wu, Y. N.; Qiu, A. T.; Guo, J.; Zhong, Z. Q.; Zhang, L. Visual detection of captopril based on the light activated oxidase-mimic activity of covalent organic framework. Microchem. J. 2022, 175, 107080.
Xi, J. Q.; Wei, G.; Wu, Q. W.; Xu, Z. L.; Liu, Y. W.; Han, J.; Fan, L.; Gao, L. Z. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater. Sci. 2019, 7, 4131–4141.