AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water

Hongli Sun1Wei Ou1Like Sun1Bo Wang2Chenliang Su1( )
International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Show Author Information

Graphical Abstract

The [H]s-involved semi-artificial organic synthesis and artificial nanocatalytic reduction of organic molecules with water as the hydrogen donor. In the presence of nanocatalysts, the proton or the water can be reduced by the photocatalytically or electrocatalytically generated electrons to furnish reactive hydrogen species [H]s, which function in the form of powerful reducing equivalents (NAD(P)H, etc.) in semi-artificial systems. These reactive hydrogen species can efficiently assist the reduction of CO2 or organic molecules to synthesize green liquid fuels, and fine chemicals and pharmaceuticals.

Abstract

Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals, with the assistance of reactive hydrogen species, and water as the ultimate hydrogen source. However, the natural photosynthesis is inefficient due to some intrinsic properties, urging people not only to learn from but also surpass during nature imitation. In this review, we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals, with water as the hydrogen source, and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules. The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems, the structure tuning of catalysts for the evolution and utilization of hydrogen species, and the determination of reactive hydrogen species for mechanistic insights were discussed in detail. Finally, perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water (or proton) and organics.

References

[1]

Cestellos-Blanco, S.; Zhang, H.; Kim, J. M.; Shen, Y. X.; Yang, P. D. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 2020, 3, 245–255.

[2]

Hambourger, M.; Moore, G. F.; Kramer, D. M.; Gust, D.; Moore, A. L.; Moore, T. A. Biology and technology for photochemical fuel production. Chem. Soc. Rev. 2009, 38, 25–35.

[3]

Dashty, M. A quick look at biochemistry: Carbohydrate metabolism. Clin. Biochem. 2013, 46, 1339–1352.

[4]

Fang, X.; Kalathil, S.; Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 2020, 49, 4926–4952.

[5]

Yu, T.; Zhou, Y. J.; Huang, M. T.; Liu, Q. L.; Pereira, R.; David, F.; Nielsen, J. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 2018, 174, 1549–1558.e14.

[6]

Tarantino, K. T.; Liu, P.; Knowles, R. R. Catalytic ketyl-olefin cyclizations enabled by proton-coupled electron transfer. J. Am. Chem. Soc. 2013, 135, 10022–10025.

[7]

Murray, P. R.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 2022, 122, 2017–2291.

[8]

Kornienko, N.; Zhang, J. Z.; Sakimoto, K. K.; Yang, P. D.; Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 2018, 13, 890–899.

[9]

Brown, K. A.; Wilker, M. B.; Boehm, M.; Hamby, H.; Dukovic, G.; King, P. W. Photocatalytic regeneration of nicotinamide cofactors by quantum dot-enzyme biohybrid complexes. ACS Catal. 2016, 6, 2201–2204.

[10]

Liu, W. G.; Hu, W. J.; Yang, L. J.; Liu, J. Single cobalt atom anchored on carbon nitride with well-defined active sites for photo-enzyme catalysis. Nano Energy 2020, 73, 104750.

[11]

Zhang, S. H.; Zhang, Y. S.; Chen, Y.; Yang, D.; Li, S. H.; Wu, Y. Z.; Sun, Y. Y.; Cheng, Y. Q.; Shi, J. F.; Jiang, Z. Y. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis. ACS Catal. 2020, 11, 476–483.

[12]

Zhang, Y. Y.; Zhao, Y. J.; Li, R.; Liu, J. Bioinspired NADH regeneration based on conjugated photocatalytic systems. Sol. RRL 2021, 5, 2000339.

[13]

Liu, J.; Antonietti, M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energ. Environ. Sci. 2013, 6, 1486–1493.

[14]

Kuk, S. K.; Singh, R. K.; Nam, D. H.; Singh, R.; Lee, J. K.; Park, C. B. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem., Int. Ed. 2017, 56, 3827–3832.

[15]

Sakimoto, K. K.; Wong, A. B.; Yang, P. D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77.

[16]

Guo, J. L.; Suástegui, M.; Sakimoto, K. K.; Moody, V. M.; Xiao, G.; Nocera, D. G.; Joshi, N. S. Light-driven fine chemical production in yeast biohybrids. Science 2018, 362, 813–816.

[17]

Wang, B.; Jiang, Z. F.; Yu, J. C.; Wang, J. F.; Wong, P. K. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale 2019, 11, 9296–9301.

[18]

Liu, C.; Gallagher, J. J.; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.; Chang, M. C. Y.; Yang, P. D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 2015, 15, 3634–3639.

[19]

Nichols, E. M.; Gallagher, J. J.; Liu, C.; Su, Y. D.; Resasco, J.; Yu, Y.; Sun, Y. J.; Yang, P. D.; Chang, M. C. Y.; Chang, C. J. Hybrid bioinorganic approach to solar-to-chemical conversion. Proc. Natl. Acad. Sci. USA 2015, 112, 11461–11466.

[20]

Fu, Q.; Xiao, S.; Li, Z.; Li, Y. B.; Kobayashi, H.; Li, J.; Yang, Y.; Liao, Q.; Zhu, X.; He, X. F. et al. Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%. Nano Energy 2018, 53, 232–239.

[21]

Xiao, S.; Li, Z.; Fu, Q.; Li, Y. B.; Li, J.; Zhang, L.; Liao, Q.; Zhu, X. Hybrid microbial photoelectrochemical system reduces CO2 to CH4 with 1.28% solar energy conversion efficiency. Chem. Eng. J. 2020, 390, 124530.

[22]

Su, Y. D.; Cestellos-Blanco, S.; Kim, J. M.; Shen, Y. X.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y. H.; Yang, P. D. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 2020, 4, 800–811.

[23]

Cai, Z. H.; Huang, L. P.; Quan, X.; Zhao, Z. B.; Shi, Y.; Li Puma, G. Acetate production from inorganic carbon (HCO3) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species. Appl. Catal. B Environ. 2020, 267, 118611.

[24]
Harnisch, F.; Holtmann, D. Bioelectrosynthesis: Advances in Biochemical Engineering/Biotechnology; Springer: Cham, 2019.
[25]

Wienkamp, R.; Steckhan, E. Indirect electrochemical regeneration of NADH by a bipyridinerhodium(I) complex as electron-transfer agent. Angew. Chem., Int. Ed. 1982, 21, 782–783.

[26]

Baik, S. H.; Kang, C.; Jeon, I. I.; Yun, S. E. Direct electrochemical regeneration of NADH from NAD+ using cholesterol-modified gold amalgam electrode. Biotechnol. Technol. 1999, 13, 1–5.

[27]

Kim, Y. H.; Yoo, Y. J. Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode. Enzyme Microb. Technol. 2009, 44, 129–134.

[28]

Cai, R.; Milton, R. D.; Abdellaoui, S.; Park, T.; Patel, J.; Alkotaini, B.; Minteer, S. D. electroenzymatic C–C bond formation from CO2. J. Am. Chem. Soc. 2018, 140, 5041–5044.

[29]

Yuan, M. W.; Kummer, M. J.; Milton, R. D.; Quah, T.; Minteer, S. D. Efficient NADH regeneration by a redox polymer-immobilized enzymatic system. ACS Catal. 2019, 9, 5486–5495.

[30]

Dong, F. Y.; Chen, H.; Malapit, C. A.; Prater, M. B.; Li, M.; Yuan, M. W.; Lim, K.; Minteer, S. D. Biphasic bioelectrocatalytic synthesis of chiral β-hydroxy nitriles. J. Am. Chem. Soc. 2020, 142, 8374–8382.

[31]

Hongo, M.; Iwahara, M. Application of electro-energizing method to L-glutamic acid fermentation. J. Agric. Food Chem. 1979, 43, 2075–2081.

[32]

Nevin, K. P.; Woodard, T. L.; Franks, A. E.; Summers, Z. M.; Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1, e00103–10.

[33]

Rabaey, K.; Rozendal, R. A. Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 2010, 8, 706–716.

[34]

Torella, J. P.; Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Colón, B.; Way, J. C.; Silver, P. A.; Nocera, D. G. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc. Natl. Acad. Sci. USA 2015, 112, 2337–2342.

[35]

Li, H.; Opgenorth, P. H.; Wernick, D. G.; Rogers, S.; Wu, T. Y.; Higashide, W.; Malati, P.; Huo, Y. X.; Cho, K. M.; Liao, J. C. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 2012, 335, 1596–1596.

[36]

Zhou, M.; Chen, J. W.; Freguia, S.; Rabaey, K.; Keller, J. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ. Sci. Technol. 2013, 47, 11199–11205.

[37]

Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

[38]

Rodrigues, R. M.; Guan, X.; Iñiguez, J. A.; Estabrook, D. A.; Chapman, J. O.; Huang, S. Y.; Sletten, E. M.; Liu, C. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat. Catal. 2019, 2, 407–414.

[39]

Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

[40]

Liang, J. L.; Jiang, Z. F.; Wong, P. K.; Lee, C. S. Recent progress on carbon nitride and its hybrid photocatalysts for CO2 reduction. Sol. RRL 2020, 5, 2000478.

[41]

Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

[42]

Ou, W.; Qiu, C. T.; Su, C. L. Photo- and electro-catalytic deuteration of feedstock chemicals and pharmaceuticals: A review. Chin. J. Catal. 2022, 43, 956–970.

[43]

Tao, X. P.; Zhao, Y.; Wang, S. Y.; Li, C.; Li, R. G. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem. Soc. Rev. 2022, 51, 3561–3608.

[44]

Meng, A. Y.; Teng, Z. Y.; Zhang, Q. T.; Su, C. L. Intrinsic defects in polymeric carbon nitride for photocatalysis applications. Chem. Asian J. 2020, 15, 3405–3415.

[45]

Ou, W.; Xu, Y. S.; Zhou, H. W.; Su, C. L. Harnessing photoexcited redox centers of semiconductor photocatalysts for advanced synthetic chemistry. Sol. RRL 2021, 5, 2000444.

[46]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[47]

Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas–water boundary. Angew. Chem., Int. Ed. 2022, 61, e202200802.

[48]

Zubair, M.; Vanhaecke, E. M. M.; Svenum, I. H.; Rønning, M.; Yang, J. Core–shell particles of C-doped CdS and graphene: A noble metal-free approach for efficient photocatalytic H2 generation. Green Energy Environ. 2020, 5, 461–472.

[49]

Meng, A. Y.; Cheng, B.; Tan, H. Y.; Fan, J. J.; Su, C. L.; Yu, J. G. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl. Catal. B Environ. 2021, 289, 120039.

[50]

Liu, Y.; Guo, J. G.; Wang, Y.; Hao, Y. J.; Liu, R. H.; Li, F. T. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO. Green Energy Environ. 2021, 6, 244–252.

[51]

Yu, L. M.; Mo, Z.; Zhu, X. L.; Deng, J. J.; Xu, F.; Song, Y. H.; She, Y. B.; Li, H. M.; Xu, H. Construction of 2D/2D Z-scheme MnO2−x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy Environ. 2021, 6, 538–545.

[52]

Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342.

[53]

Kumar, A.; Krishnan, V. Vacancy engineering in semiconductor photocatalysts: Implications in hydrogen evolution and nitrogen fixation applications. Adv. Funct. Mater. 2021, 31, 2009807.

[54]

Marschall, R. Semiconductor Composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

[55]

Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 2019, 44, 540–577.

[56]

Sun, H. L.; Ma, Y. F.; Zhang, Q. T.; Su, C. L. Engineering the local coordination environment of single-atom catalysts and their applications in photocatalytic water splitting: A review. Trans. Tianjin Univ. 2021, 27, 313–330.

[57]

Sun, H. L.; Wei, K.; Wu, D.; Jiang, Z. F.; Zhao, H.; Wang, T. Q.; Zhang, Q.; Wong, P. K. Structure defects promoted exciton dissociation and carrier separation for enhancing photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 264, 118480.

[58]

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.

[59]

Xu, Y. S.; Fan, M. J.; Yang, W. J.; Xiao, Y. H.; Zeng, L. T.; Wu, X.; Xu, Q. H.; Su, C. L.; He, Q. J. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv. Mater. 2021, 33, 2101455.

[60]

Li, Q. F.; Ren, C.; Qiu, C. T.; He, T. C.; Zhang, Q. T.; Ling, X.; Xu, Y. S.; Su, C. L. Promoting near-infrared photocatalytic activity of carbon-doped carbon nitride via solid alkali activation. Chin. Chem. Lett. 2021, 32, 3463–3468.

[61]

Li, J. Y.; Li, Y. H.; Qi, M. Y.; Lin, Q.; Tang, Z. R.; Xu, Y. J. Selective organic transformations over cadmium sulfide-based photocatalysts. ACS Catal. 2020, 10, 6262–6280.

[62]

Qi, M. Y.; Li, Y. H.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Efficient photoredox-mediated C–C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots. ACS Catal. 2020, 10, 14327–14335.

[63]

Han, C.; Li, Y. H.; Li, J. Y.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Cooperative syngas production and C–N bond formation in one photoredox cycle. Angew. Chem., Int. Ed. 2021, 133, 8041–8049.

[64]

Qi, M. Y.; Conte, M.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085.

[65]

Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling organic synthesis and hydrogen evolution over composite WO3/ZnIn2S4 Z-scheme photocatalyst. J. Phys. Chem. C 2022, 126, 1872–1880.

[66]

Huang, X. B.; Li, X. J.; Luan, Q. J.; Zhang, K. Y.; Wu, Z. Y.; Li, B. Z.; Xi, Z. S.; Dong, W. J.; Wang, G. Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light. Nano Res. 2021, 14, 4250–4257.

[67]
Feng, B. B. ; Guo, R. ; Cai, Q. L. ; Song, Y. P. ; Li, N. ; Fu, Y. H. ; Chen, D. L. ; Zhang, J. W. ; Zhu, W. D. ; Zhang, F. M. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Res. 2022, 15, 6001–6009.
[68]

Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

[69]

Zhang, M.; Chang, J. N.; Chen, Y. F.; Lu, M.; Yu, T. Y.; Jiang, C.; Li, S. L.; Cai, Y. P.; Lan, Y. Q. Controllable synthesis of COFs-based multicomponent nanocomposites from core–shell to yolk–shell and hollow-sphere structure for artificial photosynthesis. Adv. Mater. 2021, 33, 2105002.

[70]
Sun, L. S. ; Lu, M. ; Yang, Z. F. ; Yu, Z. Y. ; Su, X. ; Lan, Y. Q. ; Chen, L. Nickel glyoximate based metal-covalent organic frameworks for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202204326.
[71]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[72]

Zhang, M.; Chen, Y. F.; Chang, J. N.; Jiang, C.; Ji, W. X.; Li, L. Y.; Lu, M.; Dong, L. Z.; Li, S. L.; Cai, Y. P. et al. Efficient charge migration in chemically-bonded Prussian blue analogue/CdS with beaded structure for photocatalytic H2 evolution. JACS Au 2021, 1, 212–220.

[73]

Xia, Y. S.; Tang, M. Z.; Zhang, L.; Liu, J.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Xie, L. G.; Lan, Y. Q. Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides. Nat. Commun. 2022, 13, 2964.

[74]

Liu, C. B.; Chen, Z. X.; Su, C. L.; Zhao, X. X.; Gao, Q.; Ning, G. H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W. et al. Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nat. Commun. 2018, 9, 80.

[75]

Yu, Y. F.; Zhang, B. Photocatalytic deuteration of halides using D2O over CdSe porous nanosheets: A mild and controllable route to deuterated molecules. Angew. Chem., Int. Ed. 2018, 57, 5590–5592.

[76]

Han, C.; Han, G. Q.; Yao, S. K.; Yuan, L.; Liu, X. W.; Cao, Z.; Mannodi-Kanakkithodi, A.; Sun, Y. J. Defective ultrathin ZnIn2S4 for photoreductive deuteration of carbonyls using D2O as the deuterium source. Adv. Sci. 2021, 9, e2103408.

[77]

Kandi, D.; Martha, S.; Parida, K. M. Quantum dots as enhancer in photocatalytic hydrogen evolution: A review. Int. J. Hydrog. Energy 2017, 42, 9467–9481.

[78]

Holmes, M. A.; Townsend, T. K.; Osterloh, F. E. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48, 371–373.

[79]

Nan, X. L.; Wang, Y.; Li, X. B.; Tung, C. H.; Wu, L. Z. Site-selective D2O-mediated deuteration of diaryl alcohols via quantum dots photocatalysis. Chem. Commun. 2021, 57, 6768–6771.

[80]

Zhang, D. S.; Ren, P. J.; Liu, W. W.; Li, Y. R.; Salli, S.; Han, F. Y.; Qiao, W.; Liu, Y.; Fan, Y. Z.; Cui, Y. et al. Photocatalytic abstraction of hydrogen atoms from water using hydroxylated graphitic carbon nitride for hydrogenative coupling reactions. Angew. Chem., Int. Ed. 2022, 61, e202204256.

[81]

Xu, F. Y.; Meng, K.; Cao, S.; Jiang, C. H.; Chen, T.; Xu, J. S.; Yu, J. G. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source. ACS Catal. 2022, 12, 164–172.

[82]

Yi, S. S.; Zhang, X. B.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Non-noble metals applied to solar water splitting. Energy Environ. Sci. 2018, 11, 3128–3156.

[83]

Xu, Y. S.; Qiu, C. T.; Fan, X.; Xiao, Y. H.; Zhang, G. Q.; Yu, K. Y.; Ju, H. X.; Ling, X.; Zhu, Y. F.; Su, C. L. K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H2 evolution and hydrogenation of alkenes. Appl. Catal. B: Environ. 2020, 268, 118457.

[84]

Qiu, C. T.; Xu, Y. S.; Fan, X.; Xu, D.; Tandiana, R.; Ling, X.; Jiang, Y. N.; Liu, C. B.; Yu, L.; Chen, W. et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 2019, 6, 1801403.

[85]

Ling, X.; Xu, Y. S.; Wu, S. P.; Liu, M. F.; Yang, P.; Qiu, C. T.; Zhang, G. Q.; Zhou, H. W.; Su, C. L. A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides. Sci. China Chem. 2020, 63, 386–392.

[86]

Zhang, Z. F.; Qiu, C. T.; Xu, Y. S.; Han, Q.; Tang, J. W.; Loh, K. P.; Su, C. L. Semiconductor photocatalysis to engineering deuterated N-alkyl pharmaceuticals enabled by synergistic activation of water and alkanols. Nat. Commun. 2020, 11, 4722.

[87]

Xu, Y. S.; Zhang, Z. F.; Qiu, C. T.; Chen, S. Q.; Ling, X.; Su, C. L. Photocatalytic water-splitting coupled with alkanol oxidation for selective N-alkylation reactions over carbon nitride. ChemSusChem 2021, 14, 582–589.

[88]

Qiu, C. T.; Sun, Y. Y.; Xu, Y. S.; Zhang, B.; Zhang, X.; Yu, L.; Su, C. L. Photoredox-catalyzed simultaneous olefin hydrogenation and alcohol oxidation over crystalline porous polymeric carbon nitride. ChemSusChem 2021, 14, 3344–3350.

[89]

Dong, Y. Y.; Su, Y. L.; Du, L. L.; Wang, R. F.; Zhang, L.; Zhao, D. B.; Xie, W. Plasmon-enhanced deuteration under visible-light irradiation. ACS Nano 2019, 13, 10754–10760.

[90]

Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

[91]

Bauer, N. A.; Hoque, E.; Wolf, M.; Kleigrewe, K.; Hofmann, T. Detection of the formyl radical by EPR spin-trapping and mass spectrometry. Free Radic. Biol. Med. 2018, 116, 129–133.

[92]

Makino, K.; Mossoba, M. M.; Riesz, P. Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and .cntdot.H) by spin trapping. J. Am. Chem. Soc. 1982, 104, 3537–3539.

[93]

Wang, Y. F.; Xu, Y. M.; Dong, S. S.; Wang, P.; Chen, W.; Lu, Z. D.; Ye, D. J.; Pan, B. C.; Wu, D.; Vecitis, C. D. et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 2021, 12, 3508.

[94]

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

[95]

Yao, Q. F.; Chen, J. B.; Xiao, S. Z.; Zhang, Y. L.; Zhou, X. F. Selective electrocatalytic reduction of nitrate to ammonia with nickel phosphide. ACS Appl. Mater. Interfaces 2021, 13, 30458–30467.

[96]

Zheng, W. T.; You, S. J.; Yao, Y.; Jin, L. M.; Liu, Y. B. Development of atomic hydrogen-mediated electrocatalytic filtration system for peroxymonosulfate activation towards ultrafast degradation of emerging organic contaminants. Appl. Catal. B: Environ. 2021, 298, 120593.

[97]

Feng, T.; Wang, J.; Wang, Y.; Yu, C. F.; Zhou, X.; Xu, B. C.; László, K.; Li, F. T.; Zhang, W. X. Selective electrocatalytic reduction of nitrate to dinitrogen by Cu2O nanowires with mixed oxidation-state. Chem. Eng. J. 2022, 433, 133495.

[98]

Zeng, H. B.; Zhang, G.; Ji, Q. H.; Liu, H. J.; Hua, X. L.; Xia, H.; Sillanpää, M.; Qu, J. H. pH-independent production of hydroxyl radical from atomic H*-mediated electrocatalytic H2O2 reduction:A green Fenton process without byproducts. Environ. Sci. Technol. 2020, 54, 14725–14731.

[99]

Liu, C. B.; Han, S. Y.; Li, M. Y.; Chong, X. D.; Zhang, B. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode. Angew. Chem., Int. Ed. 2020, 59, 18527–18531.

[100]

Lu, L. J.; Li, H.; Zheng, Y. F.; Bu, F. X.; Lei, A. W. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides. CCS Chem. 2021, 3, 2669–2675.

[101]

Han, S. H.; Shi, Y. M.; Wang, C. H.; Liu, C. B.; Zhang, B. Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Rep. Phys. Sci. 2021, 2, 100337.

[102]

Li, M. Y.; Liu, C. B.; Huang, Y.; Han, S. Y.; Zhang, B. Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode. Chinese J. Catal. 2021, 42, 1983–1991.

[103]

Liu, T.; Luo, J. M.; Meng, X. Y.; Yang, L. M.; Liang, B.; Liu, M. J.; Liu, C. B.; Wang, A. J.; Liu, X.; Pei, Y. et al. Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine–cobalt bond and atomic H. J. Hazard. Mater. 2018, 358, 294–301.

[104]

Liu, H. L.; Han, J. L.; Yuan, J. L.; Liu, C. B.; Wang, D.; Liu, T.; Liu, M. J.; Luo, J. M.; Wang, A. J.; Crittenden, J. C. Deep dehalogenation of florfenicol using crystalline CoP nanosheet arrays on a Ti plate via direct cathodic reduction and atomic H. Environ. Sci. Technol. 2019, 53, 11932–11940.

[105]

Singh, N.; Sanyal, U.; Fulton, J. L.; Gutiérrez, O. Y.; Lercher, J. A.; Campbell, C. T. Quantifying adsorption of organic molecules on platinum in aqueous phase by hydrogen site blocking and in situ X-ray absorption spectroscopy. ACS Catal. 2019, 9, 6869–6881.

[106]

Jerkiewicz, G. Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen. Electrocatalysis 2010, 1, 179–199.

[107]

Zalineeva, A.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 2015, 31, 1605–1609.

[108]

Zalineeva, A.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G. Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 2017, 3, e1600542.

[109]

Gabrielli, C.; Grand, P. P.; Lasia, A.; Perrot, H. Investigation of hydrogen adsorption and absorption in palladium thin films. J. Electrochem. Soc. 2004, 151, A1937.

[110]

Singh, R. K.; Ramesh, R.; Devivaraprasad, R.; Chakraborty, A.; Neergat, M. Hydrogen interaction (electrosorption and evolution) characteristics of Pd and Pd3Co alloy nanoparticles: An in-situ investigation with electrochemical impedance spectroscopy. Electrochim. Acta 2016, 194, 199–210.

[111]

Van Der Niet, M. J. T. C.; Garcia-Araez, N.; Hernández, J.; Feliu, J. M.; Koper, M. T. M. Water dissociation on well-defined platinum surfaces: The electrochemical perspective. Catal. Today 2013, 202, 105–113.

[112]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[113]

Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

[114]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Lu, S. Y.; Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew. Chem., Int. Ed. 2020, 59, 21170–21175.

[115]

Zhou, L.; Zhu, X. R.; Su, H.; Lin, H. Z.; Lyu, Y.; Zhao, X.; Chen, C.; Zhang, N. N.; Xie, C.; Li, Y. Y. et al. Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Sci. China Chem. 2021, 64, 1586–1595.

[116]

Jiang, G. M.; Lan, M. N.; Zhang, Z. Y.; Lv, X. S.; Lou, Z. M.; Xu, X. H.; Dong, F.; Zhang, S. Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2,4-dichlorophenol in water. Environ. Sci. Technol. 2017, 51, 7599–7605.

[117]

Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.

[118]

Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

[119]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[120]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[121]

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Mater. 2017, 1, 0003.

[122]

Singh, N.; Song, Y.; Gutiérrez, O. Y.; Camaioni, D. M.; Campbell, C. T.; Lercher, J. A. Electrocatalytic hydrogenation of phenol over platinum and rhodium: Unexpected temperature effects resolved. ACS Catal. 2016, 6, 7466–7470.

[123]

Kurimoto, A.; Sherbo, R. S.; Cao, Y.; Loo, N. W. X.; Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 2020, 3, 719–726.

[124]

Sherbo, R. S.; Kurimoto, A.; Brown, C. M.; Berlinguette, C. P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 2019, 141, 7815–7821.

[125]

Sherbo, R. S.; Delima, R. S.; Chiykowski, V. A.; MacLeod, B. P.; Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 2018, 1, 501–507.

[126]

Zhang, B.; Qiu, C. T.; Wang, S.; Gao, H.; Yu, K. Y.; Zhang, Z. F.; Ling, X.; Ou, W.; Su, C. L. Electrocatalytic water-splitting for the controllable and sustainable synthesis of deuterated chemicals. Sci. Bull. 2021, 66, 562–569.

[127]

Chadderdon, X. H.; Chadderdon, D. J.; Matthiesen, J. E.; Qiu, Y.; Carraher, J. M.; Tessonnier, J. P.; Li, W. Z. Mechanisms of furfural reduction on metal electrodes: Distinguishing pathways for selective hydrogenation of bioderived oxygenates. J. Am. Chem. Soc. 2017, 139, 14120–14128.

[128]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

[129]

Lopez-Ruiz, J. A.; Andrews, E.; Akhade, S. A.; Lee, M. S.; Koh, K.; Sanyal, U.; Yuk, S. F.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J. et al. Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds. ACS Catal. 2019, 9, 9964–9972.

[130]

Lopez-Ruiz, J. A.; Sanyal, U.; Egbert, J.; Gutiérrez, O. Y.; Holladay, J. Kinetic investigation of the sustainable electrocatalytic hydrogenation of benzaldehyde on Pd/C: Effect of electrolyte composition and half-cell potentials. ACS Sustainable Chem. Eng. 2018, 6, 16073–16085.

[131]

Singh, N.; Sanyal, U.; Ruehl, G.; Stoerzinger, K. A.; Gutiérrez, O. Y.; Camaioni, D. M.; Fulton, J. L.; Lercher, J. A.; Campbell, C. T. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. J. Catal. 2020, 382, 372–384.

[132]

Singh, N.; Nguyen, M. T.; Cantu, D. C.; Mehdi, B. L.; Browning, N. D.; Fulton, J. L.; Zheng, J.; Balasubramanian, M.; Gutiérrez, O. Y.; Glezakou, V. A. et al. Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. J. Catal. 2018, 368, 8–19.

[133]

Bockris, J. O. M.; McBreen, J.; Nanis, L. The hydrogen evolution kinetics and hydrogen entry into α-Iron. J. Electrochem. Soc. 1965, 112, 1025.

[134]

Gabrielli, C.; Grand, P. P.; Lasia, A.; Perrot, H. Investigation of hydrogen adsorption–absorption into thin palladium films. J. Electrochem. Soc. 2004, 151, A1925.

[135]

Lin, B. Q.; Wu, X.; Xie, L.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Li, J.; Gan, L. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew. Chem., Int. Ed. 2020, 59, 20348–20352.

[136]

Stacchiola, D.; Tysoe, W. T. The effect of subsurface hydrogen on the adsorption of ethylene on Pd (111). Surf. Sci. 2003, 540, L600–L604.

[137]

Khan, N. A.; Shaikhutdinov, S.; Freund, H. J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal. Lett. 2006, 108, 159–164.

[138]

Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Havecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlogl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

[139]

Teschner, D.; Borsodi, J.; Kis, Z.; Szentmiklósi, L.; Révay, Z.; Knop-Gericke, A.; Schlögl, R.; Torres, D.; Sautet, P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. J. Phys. Chem. C 2010, 114, 2293–2299.

[140]

Armbrüster, M.; Behrens, M.; Cinquini, F.; Föttinger, K.; Grin, Y.; Haghofer, A.; Klötzer, B.; Knop-Gericke, A.; Lorenz, H.; Ota, A. et al. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem 2012, 4, 1048–1063.

[141]

Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 126, 13589–13593.

[142]

Roylance, J. J.; Kim, T. W.; Choi, K. S. Efficient and selective electrochemical and photoelectrochemical reduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan using water as the hydrogen source. ACS Catal. 2016, 6, 1840–1847.

[143]

Chong, X. D.; Liu, C. B.; Huang, Y.; Huang, C. Q.; Zhang, B. Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. Natl. Sci. Rev. 2020, 7, 285–295.

[144]

Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem., Int. Ed. 2019, 131, 9253–9257.

[145]

Inami, Y.; Ogihara, H.; Nagamatsu, S.; Asakura, K.; Yamanaka, I. Synergy of Ru and Ir in the electrohydrogenation of toluene to methylcyclohexane on a ketjenblack-supported Ru-Ir alloy cathode. ACS Catal. 2019, 9, 2448–2457.

[146]

Mitsushima, S.; Takakuwa, Y.; Nagasawa, K.; Sawaguchi, Y.; Kohno, Y.; Matsuzawa, K.; Awaludin, Z.; Kato, A.; Nishiki, Y. Membrane electrolysis of toluene hydrogenation with water decomposition for energy carrier synthesis. Electrocatalysis 2016, 7, 127–131.

[147]

Higuchi, E.; Ueda, Y.; Chiku, M.; Inoue, H. Electrochemical hydrogenation reaction of toluene with PtxRu alloy catalyst-loaded gas diffusion electrodes. Electrocatalysis 2018, 9, 226–235.

[148]

Inami, Y.; Ogihara, H.; Yamanaka, I. Selective electrohydrogenation of toluene to methylcyclohexane using carbon-supported non-platinum electrocatalysts in the hydrogen storage system. ChemistrySelect 2017, 2, 1939–1943.

[149]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

[150]

Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Powering the future with liquid sunshine. Joule, 2018, 2, 1925–1949.

Nano Research
Pages 10292-10315
Cite this article:
Sun H, Ou W, Sun L, et al. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Research, 2022, 15(12): 10292-10315. https://doi.org/10.1007/s12274-022-4737-0
Topics:
Part of a topical collection:

1195

Views

11

Crossref

12

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 13 May 2022
Revised: 29 June 2022
Accepted: 02 July 2022
Published: 15 August 2022
© Tsinghua University Press 2022
Return