AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

GSH-responsive camptothecin prodrug-based hybrid micellar nanoparticles enable antitumor chemo-immunotherapy by PD-L1 knockdown

Xi Tan1Hong Zhou1Chenhui Wang1,2Xuhan Liu3Xiangliang Yang1,4Wei Liu1,4( )
College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen 518060, China
National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
Show Author Information

Graphical Abstract

In this work, we successfully constructed a novel GSH-responsive and biodegradable prodrug-based hybrid micellar nanoparticles (siPD-L1@HM-CPT) by convenient and controllable preparation for co-delivery of PD-L1 siRNA (siPD-L1) and camptothecin (CPT). Moreover, siPD-L1@HM-CPT could silence PD-L1 expression to sensitize CPT chemotherapy and relieve tumor immunosuppressive microenvironment (TME) strengthened by adaptive PD-L1 upregulation, and so as to facilitate cytotoxic T cells infiltration for antitumor chemo-immunotherapy.

Abstract

The combinational chemo-immunotherapy as a novel treatment strategy has been widely studied and applied in clinic to enhance antitumor therapeutic efficacy and relieve side effects. RNA interference (RNAi) targeting PD-L1 via inhibiting novo production of PD-L1 will overcome the innate and adaptive PD-L1 expression during chemotherapy, thus enable sustained and efficient immune checkpoint blockade (ICB) to active antitumor immune response. Herein, we designed a glutathione (GSH)-responsive camptothecin (CPT) prodrug-based hybrid micellar nanoparticles (siPD-L1@HM-CPT) to achieve synergistic antitumor chemo-immunotherapy by PD-L1 knockdown. siPD-L1@HM-CPT derived from the one-step loading PD-L1 siRNA (siPD-L1) into the CPT prodrug-based hybrid micelles (HM-CPT) which were co-assembled from biodegradable polyphosphoesters-based prodrug CPT-ss-PAEEP15 and stabilizer DSPE-PEG, showed high loading efficiency, GSH-responsive drug release, and excellent stability and biosafety. siPD-L1@HM-CPT achieved simultaneously the co-delivery of CPT and siPD-L1 in vitro and in vivo, high accumulation at the tumor sites, and rapid intracellular release to promote antitumor efficacy via sensitizing CPT chemotherapy, inducing strong immunogenic cell death (ICD) and sustained ICB to improve intratumoral CD8+ T cells infiltration. In addition, the antitumor immunity response limited by the differentiated immunogenicity, intrinsic PD-L1 expression, and intracellular GSH level was facilitated by efficient ICD and ICB from silencing PD-L1 and synergistic CPT chemosensitization in our experimental B16-F10 and 4T1 tumor models. Our study might offer a perspective on designing novel co-delivery nanoparticles by convenient and controllable preparation for antitumor chemo-immunotherapy.

Electronic Supplementary Material

Download File(s)
12274_2022_4739_MOESM1_ESM.pdf (2 MB)

References

[1]

Jiang, M. S.; Li, W.; Zhu, C. Q.; Li, X.; Zhang, J. L.; Luo, Z. Y.; Qin, B.; Du, Y. Z.; Luo, L. H.; You, J. Perdurable PD-1 blockage awakes anti-tumor immunity suppressed by precise chemotherapy. J. Control. Release 2021, 329, 1023–1036.

[2]

Cai, S. X.; Chen, Z. Y.; Wang, Y. J.; Wang, M.; Wu, J. Y.; Tong, Y. H.; Chen, L. L.; Lu, C. H.; Yang, H. H. Reducing PD-L1 expression with a self-assembled nanodrug: An alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics 2021, 11, 1970–1981.

[3]

Chen, S. B.; Li, D. D.; Du, X. J.; He, X. Y.; Huang, M. W.; Wang, Y.; Yang, X. Z.; Wang, J. Carrier-free nanoassembly of doxorubicin prodrug and siRNA for combinationally inducing immunogenic cell death and reversing immunosuppression. Nano Today 2020, 35, 100924.

[4]

Liu, X. S.; Jiang, J. H.; Liao, Y. P.; Tang, I.; Zheng, E.; Qiu, W.; Lin, M.; Wang, X.; Ji, Y.; Mei, K. C. et al. Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1. Adv. Sci. 2021, 8, 2002147.

[5]

Wang, F. H.; Xu, D. Q.; Su, H.; Zhang, W. J.; Sun, X. R.; Monroe, M. K.; Chakroun, R. W.; Wang, Z. Y.; Dai, W. B.; Oh, R. et al. Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker-based immunotherapy. Sci. Adv. 2020, 6, eaaz8985.

[6]

Sun, W.; Du, Y.; Liang, X. L.; Yu, C. Y.; Fang, J. J.; Lu, W.; Guo, X. Y.; Tian, J.; Jin, Y. H.; Zheng, J. J. Synergistic triple-combination therapy with hyaluronic acid-shelled PPy/CPT nanoparticles results in tumor regression and prevents tumor recurrence and metastasis in 4T1 breast cancer. Biomaterials 2019, 217, 119264.

[7]

Zhang, Z. J.; Shen, W. W.; Ling, J.; Yan, Y.; Hu, J. J.; Cheng, Y. Y. The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat. Commun. 2018, 9, 1377.

[8]

Chen, G.; Wang, K. K.; Wu, P. K.; Wang, Y. X.; Zhou, Z. W.; Yin, L. F.; Sun, M. J.; Oupický, D. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res. 2018, 11, 3746–3761.

[9]

Lv, J.; Chang, H.; Wang, Y.; Wang, M. M.; Xiao, J. R.; Zhang, Q.; Cheng, Y. Y. Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J. Mater. Chem. B 2015, 3, 642–650.

[10]

Liu, X. H.; Tan, X.; Rao, R.; Ren, Y. Y.; Li, Y. H.; Yang, X. L.; Liu, W. Self-assembled PAEEP–PLLA micelles with varied hydrophilic block lengths for tumor cell targeting. ACS Appl. Mater. Interfaces 2016, 8, 23450–23462.

[11]

Steinbach, T.; Wurm, F. R. Poly(phosphoester)s: A new platform for degradable polymers. Angew. Chem., Int. Ed. 2015, 54, 6098–6108.

[12]

Luo, B. H.; Liang, H. G.; Zhang, S. W.; Qin, X. J.; Liu, X. H.; Liu, W.; Zeng, F. Q.; Wu, Y.; Yang, X. L. Novel lactoferrin-conjugated amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) copolymer nanobubbles for tumor-targeting ultrasonic imaging. Int. J. Nanomed. 2015, 10, 5805–5817.

[13]

Li, S. L.; Saw, P. E.; Lin, C. H.; Nie, Y.; Tao, W.; Farokhzad, O. C.; Zhang, L.; Xu, X. D. Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials 2020, 234, 119760.

[14]

Dai, L. L.; Cai, R. S.; Li, M. H.; Luo, Z.; Yu, Y. L.; Chen, W. Z.; Shen, X. K.; Pei, Y. X.; Zhao, X. J.; Cai, K. Y. Dual-targeted cascade-responsive prodrug micelle system for tumor therapy in vivo. Chem. Mater. 2017, 29, 6976–6992.

[15]

Yang, Y. X.; Zuo, S. Y.; Zhang, J. X.; Liu, T.; Li, X. M.; Zhang, H. T.; Cheng, M. S.; Wang, S. J.; He, Z. G.; Sun, B. J. et al. Prodrug nanoassemblies bridged by Mono-/Di-/Tri-sulfide bonds: Exploration is for going further. Nano Today 2022, 44, 101480.

[16]

Liu, X. H.; Li, Y. H.; Tan, X.; Rao, R.; Ren, Y. Y.; Liu, L. Y.; Yang, X. L.; Liu, W. Multifunctional hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release for enhanced tumor suppression. Biomaterials 2018, 157, 136–148.

[17]

Wang, H. X.; Xiong, M. H.; Wang, Y. C.; Zhu, J.; Wang, J. N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver. J. Control. Release 2013, 166, 106–114.

[18]

Kleffel, S.; Posch, C.; Barthel, S. R.; Mueller, H.; Schlapbach, C.; Guenova, E.; Elco, C. P.; Lee, N.; Juneja, V. R.; Zhan, Q. et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell 2015, 162, 1242–1256.

[19]

Shen, B.; Huang, D. Y.; Ramsey, A. J.; Ig-Izevbekhai, K.; Zhang, K.; Lajud, S. A.; O’Malley, B. W.; Li, D. Q. PD-L1 and MRN synergy in platinum-based chemoresistance of head and neck squamous cell carcinoma. Br. J. Cancer 2020, 122, 640–647.

[20]

Jia, L.; Gao, Y.; Zhou, T.; Zhao, X. L.; Hu, H. Y.; Chen, D. W.; Qiao, M. X. Enhanced response to PD-L1 silencing by modulation of TME via balancing glucose metabolism and robust co-delivery of siRNA/Resveratrol with dual-responsive polyplexes. Biomaterials 2021, 271, 120711.

[21]

Wu, J. Y.; Chen, J.; Feng, Y. J.; Zhang, S. J.; Lin, L.; Guo, Z. P.; Sun, P. J.; Xu, C. N.; Tian, H. Y.; Chen, X. S. An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. Sci. Adv. 2020, 6, eabc7828.

[22]

Liu, J. Y.; Liu, W. E.; Weitzhandler, I.; Bhattacharyya, J.; Li, X. H.; Wang, J.; Qi, Y. Z.; Bhattacharjee, S.; Chilkoti, A. Ring-opening polymerization of prodrugs: A versatile approach to prepare well-defined drug-loaded nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 1002–1006.

[23]

Ma, Y. C.; Wang, J. X.; Tao, W.; Sun, C. Y.; Wang, Y. C.; Li, D. D.; Fan, F.; Qian, H. S.; Yang, X. Z. Redox-responsive polyphosphoester-based micellar nanomedicines for overriding chemoresistance in breast cancer cells. ACS Appl. Mater. Interfaces 2015, 7, 26315–26325.

[24]

Li, Y. H.; Jia, F.; Deng, X. W.; Wang, X.; Lu, J. Q.; Shao, L. H.; Cui, X. Y.; Pan, Z. A.; Wu, Y. Combinatorial miRNA-34a replenishment and irinotecan delivery via auto-fluorescent polymeric hybrid micelles for synchronous colorectal cancer theranostics. Biomater. Sci. 2020, 8, 7132–7144.

[25]

Ma, X. J.; Tan, X.; Yu, B. B.; Sun, W. W.; Wang, H. P.; Hu, H. J.; Du, Y. Y.; He, R. R.; Gao, R.; Peng, Q. W. et al. DOCK2 regulates antifungal immunity by regulating RAC GTPase activity. Cell. Mol. Immunol. 2022, 19, 602–618.

[26]

Lu, L.; Zhao, X. J.; Fu, T. W.; Li, K.; He, Y.; Luo, Z.; Dai, L. L.; Zeng, R.; Cai, K. Y. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 2020, 230, 119666.

[27]

Lu, L.; Li, B.; Lin, C. C; Li, K.; Liu, G. H.; Xia, Z. Z. L.; Luo, Z.; Cai, K. Y. Redox-responsive amphiphilic camptothecin prodrug nanoparticles for targeted liver tumor therapy. J. Mater. Chem. B 2020, 8, 3918–3928.

[28]

Chen, M. H.; Zhang, Y.; Chen, Z. J.; Xie, S. Z.; Luo, X. M.; Li, X. H. Synergistic antitumor efficacy of redox and pH dually responsive micelleplexes for co-delivery of camptothecin and genes. Acta Biomater. 2017, 49, 444–455.

[29]

Li, Y. H.; Tan, X.; Liu, X. H.; Liu, L. Y.; Fang, Y.; Rao, R.; Ren, Y. Y.; Yang, X. L.; Liu, W. Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance. Asian J. Pharm. Sci. 2020, 15, 646–660.

[30]

Guan, J. K.; Wu, Y. X.; Liu, X.; Wang, H. M.; Ye, N. B.; Li, Z.; Xiao, C.; Zhang, Z. J.; Li, Z. F.; Yang, X. L. A novel prodrug and its nanoformulation suppress cancer stem cells by inducing immunogenic cell death and inhibiting indoleamine 2,3-dioxygenase. Biomaterials 2021, 279, 121180.

[31]

Zhou, Y. T.; Zhu, F. Y.; Liu, Y.; Zheng, M.; Wang, Y. B.; Zhang, D. Y.; Anraku, Y.; Zou, Y.; Li, J.; Wu, H. G. et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv. 2020, 6, eabc7031.

[32]

Cheng, T. J.; Zhang, Y. M.; Liu, J. J.; Ding, Y. X.; Ou, H. L.; Huang, F.; An, Y. L.; Liu, Y.; Liu, J. F.; Shi, L. Q. Ligand-switchable micellar nanocarriers for prolonging circulation time and enhancing targeting efficiency. ACS Appl. Mater. Interfaces 2018, 10, 5296–5304.

[33]

Wang, J. Z.; Song, Y. Q.; Sun, P. C.; An, Y. L.; Zhang, Z. K.; Shi, L. Q. Reversible interactions of proteins with mixed shell polymeric micelles: Tuning the surface hydrophobic/hydrophilic balance toward efficient artificial chaperones. Langmuir 2016, 32, 2737–2749.

[34]

Gao, H. J.; Xiong, J.; Cheng, T. J.; Liu, J. J.; Chu, L. P.; Liu, J. F.; Ma, R. J.; Shi, L. Q. In vivo biodistribution of mixed shell micelles with tunable hydrophilic/hydrophobic surface. Biomacromolecules 2013, 14, 460–467.

[35]

Lee, D. U.; Park, J. Y.; Kwon, S.; Park, J. Y.; Kim, Y. H.; Khang, D.; Hong, J. H. Apoptotic lysosomal proton sponge effect in tumor tissue by cationic gold nanorods. Nanoscale 2019, 11, 19980–19993.

[36]

Yang, Y. X.; Sun, B. J.; Zuo, S. Y.; Li, X. M.; Zhou, S.; Li, L. X.; Luo, C.; Liu, H. Z.; Cheng, M. S.; Wang, Y. J. et al. Trisulfide bond-mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 2020, 6, eabc1725.

[37]

Clark, C. A.; Gupta, H. B.; Sareddy, G.; Pandeswara, S.; Lao, S. H.; Yuan, B.; Drerup, J. M.; Padron, A.; Conejo-Garcia, J.; Murthy, K. et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 2016, 76, 6964–6974.

[38]

Bedi, D.; Henderson, H. J.; Manne, U.; Samuel, T. Camptothecin induces PD-L1 and immunomodulatory cytokines in colon cancer cells. Medicines 2019, 6, 51.

[39]

Sato, H.; Niimi, A.; Yasuhara, T.; Permata, T. B. M.; Hagiwara, Y.; Isono, M.; Nuryadi, E.; Sekine, R.; Oike, T.; Kakoti, S. et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 2017, 8, 1751.

[40]

Li, J.; Zhao, M.; Sun, M.; Wu, S. W.; Zhang, H. Y.; Dai, Y. H.; Wang, D. K. Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment. ACS Appl. Mater. Interfaces 2020, 12, 50734–50747.

[41]

Han, X. Y.; Wang, L. L.; Li, T.; Zhang, J. H.; Zhang, D. L.; Li, J. L.; Xia, Y. H.; Liu, Y. L.; Tan, W. H. Beyond blocking: Engineering RNAi-mediated targeted immune checkpoint nanoblocker enables T-cell-independent cancer treatment. ACS Nano 2020, 14, 17524–17534.

[42]

Tang, X.; Rao, J. D.; Yin, S.; Wei, J. J.; Xia, C. Y.; Li, M.; Mei, L.; Zhang, Z. R.; He, Q. PD-L1 knockdown via hybrid micelle promotes paclitaxel induced cancer-immunity cycle for melanoma treatment. Eur. J. Pharm. Sci. 2019, 127, 161–174.

[43]

Liang, J. J.; Wang, H. F.; Ding, W. X.; Huang, J. X.; Zhou, X. F.; Wang, H. Y.; Dong, X.; Li, G. Y.; Chen, E. G.; Zhou, F. et al. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity. Sci. Adv. 2020, 6, eabc3646.

[44]

Heinhuis, K. M.; Ros, W.; Kok, M.; Steeghs, N.; Beijnen, J. H.; Schellens, J. H. M. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol. 2019, 30, 219–235.

[45]

Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674.

[46]

Kwak, G.; Kim, D.; Nam, G. H.; Wang, S. Y.; Kim, I. S.; Kim, S. H.; Kwon, I. C.; Yeo, Y. Programmed cell death protein ligand-1 silencing with polyethylenimine-dermatan sulfate complex for dual inhibition of melanoma growth. ACS Nano 2017, 11, 10135–10146.

Nano Research
Pages 834-848
Cite this article:
Tan X, Zhou H, Wang C, et al. GSH-responsive camptothecin prodrug-based hybrid micellar nanoparticles enable antitumor chemo-immunotherapy by PD-L1 knockdown. Nano Research, 2023, 16(1): 834-848. https://doi.org/10.1007/s12274-022-4739-y
Topics:

1098

Views

13

Crossref

12

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 21 April 2022
Revised: 01 July 2022
Accepted: 03 July 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return