Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has necessitated rapid, easy-to-use, and accurate diagnostic methods to monitor the virus infection. Herein, a ratiometric fluorescence enzyme-linked immunosorbent assay (ELISA) was developed using Si-fluorescein isothiocyanate nanoparticles (FITC NPs) for detecting SARS-CoV-2 nucleocapsid (N) protein. Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane (APTES)-FITC as the Si source. This method did not need post-modification and avoided the reduction in quantum yield and stability. The p-nitrophenyl (pNP) produced by the alkaline phosphatase (ALP)-mediated hydrolysis of p-nitrophenyl phosphate (pNPP) could quench Si fluorescence in Si-FITC NPs via the inner filter effect. In ELISA, an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody. ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs. The change in fluorescence intensity ratio could be used for detecting N protein, with a wide linearity range (0.01–10.0 and 50–300 ng/mL) and low detection limit (0.002 ng/mL). The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum. Moreover, this proposed method can accurately distinguish coronavirus disease 2019 (COVID-19) and non-COVID-19 patient samples. Therefore, this simple, sensitive, and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection.
Ma, Y. X.; Mao, G. B.; Huang, W. R.; Wu, G. Q.; Yin, W.; Ji, X. H.; Deng, Z. S.; Cai, Z. M.; Zhang, X. E.; He, Z. K. et al. Quantum dot nanobeacons for single RNA labeling and imaging. J. Am. Chem. Soc. 2019, 141, 13454–13458.
Devi, P.; Saini, S.; Kim, K. H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 2019, 141, 111158.
Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.
So, W. Y.; Li, Q.; Legaspi, C. M.; Redler, B.; Koe, K. M.; Jin, R. C.; Peteanu, L. A. Mechanism of ligand-controlled emission in silicon nanoparticles. ACS Nano 2018, 12, 7232–7238.
Han, Y. X.; Chen, Y. L.; Liu, J. J.; Niu, X. Y.; Ma, Y. X.; Ma, S. D.; Chen, X. G. Room-temperature synthesis of yellow-emitting fluorescent silicon nanoparticles for sensitive and selective determination of crystal violet in fish tissues. Sens. Actuators B:Chem. 2018, 263, 508–516.
Zhou, Y. F.; Zhang, Y.; Zhong, Y. L.; Fu, R.; Wu, S. C.; Wang, Q.; Wang, H. Y.; Su, Y. Y.; Zhang, H. M.; He, Y. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Res. 2018, 11, 2336–2346.
Han, J. F.; Zhang, L.; Cui, M. Y.; Su, Y. Y.; He, Y. Rapid and accurate detection of lymph node metastases enabled through fluorescent silicon nanoparticles-based exosome probes. Anal. Chem. 2021, 93, 10122–10131.
Jiao, Y.; Gao, Y. F.; Meng, Y. T.; Lu, W. J.; Liu, Y.; Han, H.; Shuang, S. M.; Li, L.; Dong, C. One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications. ACS Appl. Mater. Interfaces 2019, 11, 16822–16829.
Park, S. H.; Kwon, N.; Lee, J. H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143–179.
Yue, Y. K.; Huo, F. J.; Ning, P.; Zhang, Y. B.; Chao, J. B.; Meng, X. M.; Yin, C. X. Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells. J. Am. Chem. Soc. 2017, 139, 3181–3185.
Lan, M. H.; Zhang, J. F.; Chui, Y. S.; Wang, P. F.; Chen, X. F.; Lee, C. S.; Kwong, H. L.; Zhang, W. J. Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl. Mater. Interfaces 2014, 6, 21270–21278.
Zou, C. C.; Foda, M. F.; Tan, X. C.; Shao, K.; Wu, L.; Lu, Z. C.; Bahlol, H. S.; Han, H. Y. Carbon-dot and quantum-dot-coated dual-emission core-satellite silica nanoparticles for ratiometric intracellular Cu2+ imaging. Anal. Chem. 2016, 88, 7395–7403.
Mao, G. B.; Cai, Q.; Wang, F. B.; Luo, C. L.; Ji, X. H.; He, Z. K. One-step synthesis of Rox-DNA functionalized CdZnTeS quantum dots for the visual detection of hydrogen peroxide and blood glucose. Anal. Chem. 2017, 89, 11628–11635.
Ma, J. W.; Chen, Y. G.; Chen, L.; Wang, L. Y. Ternary Pd-Ni-P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering. Nano Res. 2017, 10, 2712–2720.
Chu, B. B.; Wang, H. Y.; Song, B.; Peng, F.; Su, Y. Y.; He, Y. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 2016, 88, 9235–9242.
Yan, X.; Li, H. X.; Han, X. S.; Su, X. G. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens. Bioelectron. 2015, 74, 277–283.
Li, H. Y.; Lin, H. Y.; Lv, W. X.; Gai, P. P.; Li, F. Equipment-free and visual detection of multiple biomarkers via an aggregation induced emission luminogen-based paper biosensor. Biosens. Bioelectron. 2020, 165, 112336.
Zhang, J. Y.; Zhou, R. H.; Tang, D. D.; Hou, X. D.; Wu, P. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC Trends Anal. Chem. 2019, 110, 183–190.
Zhai, W. Y.; Wang, C. X.; Yu, P.; Wang, Y. X.; Mao, L. Q. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: Mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal. Chem. 2014, 86, 12206–12213.
Li, X.; Liu, P.; Niu, X. H.; Ye, K.; Ni, L.; Du, D.; Pan, J. M.; Lin, Y. H. Tri-functional Fe-Zr bi-metal-organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Nanoscale 2020, 12, 19383–19389.
Zhu, N.; Zhang, D. Y.; Wang, W. L.; Li, X. W.; Yang, B.; Song, J. D.; Zhao, X.; Huang, B. Y.; Shi, W. F.; Lu, R. J. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.
Ravi, N.; Cortade, D. L.; Ng, E.; Wang, S. X. Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens. Bioelectron. 2020, 165, 112454.
Jang, A. S.; Kumar, P. P. P.; Lim, D. K. Attomolar sensitive magnetic microparticles and a surface-enhanced Raman scattering-based assay for detecting SARS-CoV-2 nucleic acid targets. ACS Appl. Mater. Interfaces 2022, 14, 138–149.
Chen, M. R.; Cui, D. Z.; Zhao, Z. Y.; Kang, D.; Li, Z.; Albawardi, S.; Alsageer, S.; Alamri, F.; Alhazmi, A.; Amer, M. R. et al. Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In2O3 nanoribbon transistors and phosphatase. Nano Res. 2022, 15, 5510–5516.
Mao, G. B.; Zhang, Q.; Yang, Y. L.; Ji, X. H.; He, Z. K. Facile synthesis of stable CdTe/CdS QDs using dithiol as surface ligand for alkaline phosphatase detection based on inner filter effect. Anal. Chim. Acta 2019, 1047, 208–213.
Chen, W.; Habibul, N.; Liu, X. Y.; Sheng, G. P.; Yu, H. Q. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter. Environ. Sci. Technol. 2015, 49, 2052–2058.
Zhao, D.; Li, J.; Peng, C. Y.; Zhu, S. Y.; Sun, J.; Yang, X. R. Fluorescence immunoassay based on the alkaline phosphatase triggered in situ fluorogenic reaction of o-phenylenediamine and ascorbic acid. Anal. Chem. 2019, 91, 2978–2984.
Wei, Q. S.; Zhou, D. X.; Li, X. Q.; Chen, Y. W.; Bian, H. T. Structural dynamics of dimethyl sulfoxide aqueous solutions investigated by ultrafast infrared spectroscopy: Using thiocyanate anion as a local vibrational probe. J. Phys. Chem. B 2018, 122, 12131–12138.
Vu, H. P.; Moreau, J. W. Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Chemosphere 2015, 119, 987–993.
Castro, M. C.; Gurzenda, S.; Turra, C. M.; Kim, S.; Andrasfay, T.; Goldman, N. Reduction in life expectancy in Brazil after COVID-19. Nat. Med. 2021, 27, 1629–1635.
Yang, Y.; Yang, M. H.; Yuan, J.; Wang, F. X.; Wang, Z. Q.; Li, J. X.; Zhang, M. X.; Xing, L.; Wei, J. L.; Peng, L. et al. Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innovation 2020, 1, 100061.
Dinnes, J.; Deeks, J. J.; Berhane, S.; Taylor, M.; Adriano, A.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J. et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2021, 2021, CD013705.
Kang, S. S.; Yang, M.; Hong, Z. S.; Zhang, L. P.; Huang, Z. X.; Chen, X. X.; He, S. H.; Zhou, Z. L.; Zhou, Z. C.; Chen, Q. Y. et al. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B 2020, 10, 1228–1238.