Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Synchrotron radiation based combined technique can provide multiple structural information simultaneously, which is an important development direction of structural detection. In this study, a novel small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure (SAXS/XRD/XAFS) combined setup was constructed, where an area detector, a curved detector, and a point detector are, respectively, used for the measurements of SAXS, XRD, and XAFS signals. A detailed description about the combined setup was given. A minitype diamond detector coupled to a SAXS beamstop was used to record the transmitted X-ray intensity, making the scattering (SAXS and XRD) signal measurement compatible with the absorption (XAFS) signal measurement, avoiding mechanical switching. The two-way sampling strategy was used to acquire XAFS signals, shortening the non-counting time. The two-way and one-way sampling strategies were discussed. High-frequency sampling scheme was used to collect experimental signals, improving the measurement efficiency and signal-to-noise ratio. A detailed description and discussion about the high-frequency scheme were also given in this paper. Except the rotation of monochromator, there is no mechanical movement in measurements, time resolution may reach the level of seconds. Using this SAXS/XRD/XAFS combined setup, SAXS, XRD, and XAFS signals can be acquired simultaneously. With some in-situ sample environment system, the newly-developed combined technique can be used to track the structure evolution in complex fluids. During the formation processes of (BiO)2CO3 and ZnAPO-34 particles, the changes of in-situ experimental data with reaction time demonstrate that SAXS/XRD/XAFS combined technique is feasible to track the dynamic process.
Kumar, M. M.; Palkar, V. R.; Srinivas, K.; Suryanarayana, S. V. Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 2000, 76, 2764–2766.
Neri, G.; Bonavita, A.; Rizzo, G.; Galvagno, S.; Pinna, N.; Niederberger, M.; Capone, S.; Siciliano, P. Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sensors Actuat. B Chem. 2007, 122, 564–571.
Mammeri, F.; Le Bourhis, E.; Rozes, L.; Sanchez, C. Mechanical properties of hybrid organic-inorganic materials. J. Mater. Chem. 2005, 15, 3787–3811.
Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.
Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications progress in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.
Guinier, A.; Fournet, G.; Walker, C. B.; Vineyard, G. H. Small-angle scattering of X-rays. Phys. Today 1956, 9, 38.
Sun, Z. H.; Liu, Q. H.; Yao, T.; Yan, W. S.; Wei, S. Q. X-ray absorption fine structure spectroscopy in nanomaterials. Sci. China Mater. 2015, 58, 313–341.
Wang, X. L.; Almer, J.; Liu, C. T.; Wang, Y. D.; Zhao, J. K.; Stoica, A. D.; Haeffner, D. R.; Wang, W. H. In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys. Rev. Lett. 2003, 91, 265501.
Yao, T.; Sun, Z. H.; Li, Y. Y.; Pan, Z. Y.; Wei, H.; Xie, Y.; Nomura, M.; Niwa, Y.; Yan, W. S.; Wu, Z. Y. et al. Insights into initial kinetic nucleation of gold nanocrystals. J. Am. Chem. Soc. 2010, 132, 7696–7701.
Farvid, S. S.; Radovanovic, P. V. Phase transformation of colloidal In2O3 nanocrystals driven by the interface nucleation mechanism: A kinetic study. J. Am. Chem. Soc. 2012, 134, 7015–7024.
Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.
Bras, W.; Derbyshire, G. E.; Ryan, A. J.; Mant, G. R.; Felton, A.; Lewis, R. A.; Hall, C. J.; Greaves, G. N. Simultaneous time resolved SAXS and WAXS experiments using synchrotron radiation. Nucl. Instrum. Meth. Phys. Res. Sect. A 1993, 326, 587–591.
Daniels, J. E.; Pontoni, D.; Hoo, R. P.; Honkimäki, V. Simultaneous small- and wide-angle scattering at high X-ray energies. J. Synchrotron Radiat. 2010, 17, 473–478.
Cats, K. H.; Weckhuysen, B. M. Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: The Co/TiO2 fischer-tropsch synthesis catalyst showcase. ChemCatChem 2016, 8, 1531–1542.
Bentrup, U. Combining in situ characterization methods in one set-up: Looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4718–4730.
Patlolla, A.; Carino, E. V.; Ehrlich, S. N.; Stavitski, E.; Frenkel, A. I. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts. ACS Catal. 2012, 2, 2216–2223.
Newton, M. A.; Van Beek, W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: A view from a bridge. Chem. Soc. Rev. 2010, 39, 4845–4863.
Couves, J. W.; Thomas, J. M.; Waller, D.; Jones, R. H.; Dent, A. J.; Derbyshire, G. E.; Greaves, G. N. Tracing the conversion of aurichalcite to a copper catalyst by combined X-ray absorption and diffraction. Nature 1991, 354, 465–468.
Sankar, G.; Thomas, J. M. In situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Top. Catal. 1999, 8, 1–21.
Povia, M.; Herranz, J.; Binninger, T.; Nachtegaal, M.; Diaz, A.; Kohlbrecher, J.; Abbott, D. F.; Kim, B. J.; Schmidt, T. J. Combining SAXS and XAS to study the operando degradation of carbon-supported Pt-nanoparticle fuel cell catalysts. ACS Catal. 2018, 8, 7000–7015.
Grandjean, D.; Beale, A. M.; Petukhov, A. V.; Weckhuysen, B. M. Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J. Am. Chem. Soc. 2005, 127, 14454–14465.
Alétru, C.; Greaves, G. N.; Sankar, G.; Kempson, V. Combining in situ XAFS, XRD and SAXS to follow the synthesis of cadmium oxide from a hydroxyl gel. Jpn. J. Appl. Phys. 1999, 38, 97–100.
Greaves, G. N.; Alétru, C.; Sankar, G.; Catlow, C. R. A.; Kempson, V.; Colyer, L. In situ characterisation of semiconducting nanoparticles in zeolites with XRD, XAFS and SAXS. Jpn. J. Appl. Phys. 1999, 38, 202–205.
Greaves, G. N.; Meneau, F.; Sankar, G. SAXS/WAXS and XAFS studies of zeolite stability. Nucl. Instr. Meth. Phys. Res. Sect. B 2003, 199, 98–105.
Greaves, G. N.; Bras, W.; Oversluizen, M.; Clark, S. M. A SAXS/WAXS XAFS study of crystallisation in cordierite glass. Faraday Discuss 2002, 122, 299–314.
Beale, A. M.; Van Der Eerden, A. M. J.; Jacques, S. D. M.; Leynaud, O.; O’Brien, M. G.; Meneau, F.; Nikitenko, S.; Bras, W.; Weckhuysen, B. M. A combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. J. Am. Chem. Soc. 2006, 128, 12386–12387.
Nikitenko, S.; Beale, A. M.; Van Der Eerden, A. M. J.; Jacques, S. D. M, Leynaud, O.; O’Brien, M. G.; Detollenaere, D.; Kaptein, R.; Weckhuysen, B. M.; Bras, W. Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situ experiments. J. Synchrotron Radiat. 2008, 15, 632–640.
Bras, W.; Nikitenko, S.; Portale, G.; Beale, A.; Eerden, A. V. D.; Detollenaere, D. Combined time-resolved SAXS and X-ray spectroscopy methods. J. Phys.:Conf. Ser. 2010, 247, 012047.
Beale, A. M.; O’Brien, M. G.; Kasunič, M.; Golobič, A.; Sanchez-Sanchez, M.; Lobo, A. J. W.; Lewis, D. W.; Wragg, D. S.; Nikitenko, S.; Bras, W. et al. Probing ZnAPO-34 self-assembly using simultaneous multiple in situ techniques. J. Phys. Chem. C 2011, 115, 6331–6340.
Tang, E. S.; Xian, D. C. Beijing Synchrotron Radiation Facility (BSRF) status. Rev. Sci. Instrum. 1992, 63, 1575–1577.
Yao, L.; Liu, Y. P.; Wang, B. J.; Qian, L. X.; Xing, X. Q.; Mo, G.; Chen, Z. J.; Wu, Z. H. A polycrystalline diamond micro-detector for X-ray absorption fine structure measurements. J. Synchrotron Rad. 2022, 29, 424–430.
Liu, Y. P.; Yao, L.; Wang, B. J.; Zhong, J. J.; Wang, H.; Qian, L. X.; Chen, Z. J.; Mo, G.; Xing, X. Q.; Sheng, W. F. et al. Silicon PIN photodiode applied to acquire high-frequency sampling XAFS spectra. Nucl. Sci. Tech. 2022, 33, 91.
Liu, Y. P.; Qian, L. X.; Zhao, X. Y.; Wang, J. Y.; Yao, L.; Xing, X. Q.; Mo, G.; Cai, Q.; Chen, Z. J.; Wu, Z. H. Synthesis and formation mechanism of self-assembled 3D flower-like Bi/γ-Fe2O3 composite particles. CrystEngComm 2019, 21, 2799–2808.