AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements

Zhonghua Wu1,2( )Yunpeng Liu1Xueqing Xing1Lei Yao1Zhongjun Chen1Guang Mo1Lirong Zheng1Quan Cai1Hao Wang1,2Jiajun Zhong1,2Yuecheng Lai1,2Lixiong Qian1,2
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

A novel small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure (SAXS/XRD/XAFS) combined technique has been developed for in-situ or time-resolved structure detections, which can be used to acquire simultaneously those signals of local atomic structure, nanoscale structure, and long range ordered structure of materials.

Abstract

Synchrotron radiation based combined technique can provide multiple structural information simultaneously, which is an important development direction of structural detection. In this study, a novel small-angle X-ray scattering/X-ray diffraction/X-ray absorption fine structure (SAXS/XRD/XAFS) combined setup was constructed, where an area detector, a curved detector, and a point detector are, respectively, used for the measurements of SAXS, XRD, and XAFS signals. A detailed description about the combined setup was given. A minitype diamond detector coupled to a SAXS beamstop was used to record the transmitted X-ray intensity, making the scattering (SAXS and XRD) signal measurement compatible with the absorption (XAFS) signal measurement, avoiding mechanical switching. The two-way sampling strategy was used to acquire XAFS signals, shortening the non-counting time. The two-way and one-way sampling strategies were discussed. High-frequency sampling scheme was used to collect experimental signals, improving the measurement efficiency and signal-to-noise ratio. A detailed description and discussion about the high-frequency scheme were also given in this paper. Except the rotation of monochromator, there is no mechanical movement in measurements, time resolution may reach the level of seconds. Using this SAXS/XRD/XAFS combined setup, SAXS, XRD, and XAFS signals can be acquired simultaneously. With some in-situ sample environment system, the newly-developed combined technique can be used to track the structure evolution in complex fluids. During the formation processes of (BiO)2CO3 and ZnAPO-34 particles, the changes of in-situ experimental data with reaction time demonstrate that SAXS/XRD/XAFS combined technique is feasible to track the dynamic process.

References

[1]

Kumar, M. M.; Palkar, V. R.; Srinivas, K.; Suryanarayana, S. V. Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 2000, 76, 2764–2766.

[2]

Neri, G.; Bonavita, A.; Rizzo, G.; Galvagno, S.; Pinna, N.; Niederberger, M.; Capone, S.; Siciliano, P. Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sensors Actuat. B Chem. 2007, 122, 564–571.

[3]

Mammeri, F.; Le Bourhis, E.; Rozes, L.; Sanchez, C. Mechanical properties of hybrid organic-inorganic materials. J. Mater. Chem. 2005, 15, 3787–3811.

[4]

Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.

[5]

Liu, Y. P.; Sheng, W. F.; Wu, Z. H. Synchrotron radiation and its applications progress in inorganic materials. J. Inorg. Mater. 2021, 36, 901–918.

[6]
Wiedemann, H. Synchrotron radiation. In Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics II Nonlinear and Higher-Order Beam Dynamics; Springer: Berlin, Heidelberg, 2003; 647–686.
[7]

Guinier, A.; Fournet, G.; Walker, C. B.; Vineyard, G. H. Small-angle scattering of X-rays. Phys. Today 1956, 9, 38.

[8]
Warren, B. E. X-ray Diffraction; Dover Publications: New York, 1990.
[9]

Sun, Z. H.; Liu, Q. H.; Yao, T.; Yan, W. S.; Wei, S. Q. X-ray absorption fine structure spectroscopy in nanomaterials. Sci. China Mater. 2015, 58, 313–341.

[10]

Wang, X. L.; Almer, J.; Liu, C. T.; Wang, Y. D.; Zhao, J. K.; Stoica, A. D.; Haeffner, D. R.; Wang, W. H. In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys. Rev. Lett. 2003, 91, 265501.

[11]

Yao, T.; Sun, Z. H.; Li, Y. Y.; Pan, Z. Y.; Wei, H.; Xie, Y.; Nomura, M.; Niwa, Y.; Yan, W. S.; Wu, Z. Y. et al. Insights into initial kinetic nucleation of gold nanocrystals. J. Am. Chem. Soc. 2010, 132, 7696–7701.

[12]

Farvid, S. S.; Radovanovic, P. V. Phase transformation of colloidal In2O3 nanocrystals driven by the interface nucleation mechanism: A kinetic study. J. Am. Chem. Soc. 2012, 134, 7015–7024.

[13]

Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

[14]

Bras, W.; Derbyshire, G. E.; Ryan, A. J.; Mant, G. R.; Felton, A.; Lewis, R. A.; Hall, C. J.; Greaves, G. N. Simultaneous time resolved SAXS and WAXS experiments using synchrotron radiation. Nucl. Instrum. Meth. Phys. Res. Sect. A 1993, 326, 587–591.

[15]

Daniels, J. E.; Pontoni, D.; Hoo, R. P.; Honkimäki, V. Simultaneous small- and wide-angle scattering at high X-ray energies. J. Synchrotron Radiat. 2010, 17, 473–478.

[16]

Cats, K. H.; Weckhuysen, B. M. Combined operando X-ray diffraction/Raman spectroscopy of catalytic solids in the laboratory: The Co/TiO2 fischer-tropsch synthesis catalyst showcase. ChemCatChem 2016, 8, 1531–1542.

[17]

Bentrup, U. Combining in situ characterization methods in one set-up: Looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts. Chem. Soc. Rev. 2010, 39, 4718–4730.

[18]

Patlolla, A.; Carino, E. V.; Ehrlich, S. N.; Stavitski, E.; Frenkel, A. I. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts. ACS Catal. 2012, 2, 2216–2223.

[19]

Newton, M. A.; Van Beek, W. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: A view from a bridge. Chem. Soc. Rev. 2010, 39, 4845–4863.

[20]

Couves, J. W.; Thomas, J. M.; Waller, D.; Jones, R. H.; Dent, A. J.; Derbyshire, G. E.; Greaves, G. N. Tracing the conversion of aurichalcite to a copper catalyst by combined X-ray absorption and diffraction. Nature 1991, 354, 465–468.

[21]

Sankar, G.; Thomas, J. M. In situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Top. Catal. 1999, 8, 1–21.

[22]

Povia, M.; Herranz, J.; Binninger, T.; Nachtegaal, M.; Diaz, A.; Kohlbrecher, J.; Abbott, D. F.; Kim, B. J.; Schmidt, T. J. Combining SAXS and XAS to study the operando degradation of carbon-supported Pt-nanoparticle fuel cell catalysts. ACS Catal. 2018, 8, 7000–7015.

[23]

Grandjean, D.; Beale, A. M.; Petukhov, A. V.; Weckhuysen, B. M. Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. J. Am. Chem. Soc. 2005, 127, 14454–14465.

[24]

Alétru, C.; Greaves, G. N.; Sankar, G.; Kempson, V. Combining in situ XAFS, XRD and SAXS to follow the synthesis of cadmium oxide from a hydroxyl gel. Jpn. J. Appl. Phys. 1999, 38, 97–100.

[25]

Greaves, G. N.; Alétru, C.; Sankar, G.; Catlow, C. R. A.; Kempson, V.; Colyer, L. In situ characterisation of semiconducting nanoparticles in zeolites with XRD, XAFS and SAXS. Jpn. J. Appl. Phys. 1999, 38, 202–205.

[26]

Greaves, G. N.; Meneau, F.; Sankar, G. SAXS/WAXS and XAFS studies of zeolite stability. Nucl. Instr. Meth. Phys. Res. Sect. B 2003, 199, 98–105.

[27]

Greaves, G. N.; Bras, W.; Oversluizen, M.; Clark, S. M. A SAXS/WAXS XAFS study of crystallisation in cordierite glass. Faraday Discuss 2002, 122, 299–314.

[28]

Beale, A. M.; Van Der Eerden, A. M. J.; Jacques, S. D. M.; Leynaud, O.; O’Brien, M. G.; Meneau, F.; Nikitenko, S.; Bras, W.; Weckhuysen, B. M. A combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. J. Am. Chem. Soc. 2006, 128, 12386–12387.

[29]

Nikitenko, S.; Beale, A. M.; Van Der Eerden, A. M. J.; Jacques, S. D. M, Leynaud, O.; O’Brien, M. G.; Detollenaere, D.; Kaptein, R.; Weckhuysen, B. M.; Bras, W. Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situ experiments. J. Synchrotron Radiat. 2008, 15, 632–640.

[30]

Bras, W.; Nikitenko, S.; Portale, G.; Beale, A.; Eerden, A. V. D.; Detollenaere, D. Combined time-resolved SAXS and X-ray spectroscopy methods. J. Phys.:Conf. Ser. 2010, 247, 012047.

[31]

Beale, A. M.; O’Brien, M. G.; Kasunič, M.; Golobič, A.; Sanchez-Sanchez, M.; Lobo, A. J. W.; Lewis, D. W.; Wragg, D. S.; Nikitenko, S.; Bras, W. et al. Probing ZnAPO-34 self-assembly using simultaneous multiple in situ techniques. J. Phys. Chem. C 2011, 115, 6331–6340.

[32]

Tang, E. S.; Xian, D. C. Beijing Synchrotron Radiation Facility (BSRF) status. Rev. Sci. Instrum. 1992, 63, 1575–1577.

[33]

Yao, L.; Liu, Y. P.; Wang, B. J.; Qian, L. X.; Xing, X. Q.; Mo, G.; Chen, Z. J.; Wu, Z. H. A polycrystalline diamond micro-detector for X-ray absorption fine structure measurements. J. Synchrotron Rad. 2022, 29, 424–430.

[34]

Liu, Y. P.; Yao, L.; Wang, B. J.; Zhong, J. J.; Wang, H.; Qian, L. X.; Chen, Z. J.; Mo, G.; Xing, X. Q.; Sheng, W. F. et al. Silicon PIN photodiode applied to acquire high-frequency sampling XAFS spectra. Nucl. Sci. Tech. 2022, 33, 91.

[35]

Liu, Y. P.; Qian, L. X.; Zhao, X. Y.; Wang, J. Y.; Yao, L.; Xing, X. Q.; Mo, G.; Cai, Q.; Chen, Z. J.; Wu, Z. H. Synthesis and formation mechanism of self-assembled 3D flower-like Bi/γ-Fe2O3 composite particles. CrystEngComm 2019, 21, 2799–2808.

Nano Research
Pages 1123-1131
Cite this article:
Wu Z, Liu Y, Xing X, et al. A novel SAXS/XRD/XAFS combined technique for in-situ time-resolved simultaneous measurements. Nano Research, 2023, 16(1): 1123-1131. https://doi.org/10.1007/s12274-022-4742-3
Topics:

1163

Views

21

Crossref

20

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 06 May 2022
Revised: 25 June 2022
Accepted: 03 July 2022
Published: 28 July 2022
© Tsinghua University Press 2022
Return