AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Terbium-doped zinc oxide constructed dual-light-responsive nitric oxide-releasing platform for bacterial keratitis treatment

Yue Sun1Wei Zhang1Menghui Wang2Huijie Liu2Qun Li2Jiazhe Luo2Mengzhen Zhao2Shichen Liu2Xiaolei Wang1,2( )
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, China
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
Show Author Information

Graphical Abstract

Tb-doped ZnO constructed dual-light-responsive NO-releasing platform (CL-ZT@P@B) for the prevention and in situ treatment of bacterial keratitis (BK). The platform can release reactive oxygen species (ROS) and NO under the excitation of green light and 808 nm near-infrared (NIR), with the assistance of zinc ions to achieve efficient antibacterial and anti-inflammatory thereby treating bacterial keratitis.

Abstract

Bacterial keratitis (BK) is a principal factor contributing to corneal ulcers and ocular complications, and has become a significant killer of global vision health. Traditional antibiotic therapy has unsatisfactory therapeutic effect due to short residence time and low utilization rate of drug, and the long-term abuse of antibiotics can easily incur the prevalence of drug-resistant bacteria. Furthermore, antibiotics are not effective in addressing the excessive inflammatory response caused by infection. Here, we developed a terbium-doped zinc oxide constructed dual-light-responsive nitric oxide (NO)-releasing nanoparticle (ZT@P@B) and modified it on the surface of contact lenses (CL-ZT@P@B) to boost its bioavailability. In vitro and in vivo experimental results verified that ZT@P@B could simultaneously respond to green light (GL) and 808 nm near-infrared (NIR) without obvious damage to the eyes, releasing reactive oxygen species (ROS) and NO, which could effectively kill bacteria (including drug-resistant strains) and reduce inflammatory response. The platform provides a promising strategy for the prevention and treatment of BK.

Electronic Supplementary Material

Download File(s)
12274_2022_4744_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Ung, L.; Bispo, P. J. M.; Shanbhag, S. S.; Gilmore, M. S.; Chodosh, J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv. Ophthalmol. 2019, 64, 255–271.

[2]

De Paiva, A. D. C. M.; Da Costa Ferreira, M.; De Souza Da Fonseca, A. Photodynamic therapy for treatment of bacterial keratitis. Photodiag. Photodyn. Ther. 2022, 37, 102717.

[3]

Sahay, P.; Goel, S.; Nagpal, R.; Maharana, P. K.; Sinha, R.; Agarwal, T.; Sharma, N.; Titiyal, J. S. Infectious keratitis caused by rare and emerging micro-organisms. Curr. Eye Res. 2020, 45, 761–773.

[4]

Marquart, M. E.; O’Callaghan, R. J. Infectious keratitis: Secreted bacterial proteins that mediate corneal damage. J. Ophthalmol. 2013, 2013, 369094.

[5]

Koganti, R.; Yadavalli, T.; Naqvi, R. A.; Shukla, D.; Naqvi, A. R. Pathobiology and treatment of viral keratitis. Exp. Eye Res. 2021, 205, 108483.

[6]

Lakhundi, S.; Siddiqui, R.; Khan, N. A. Pathogenesis of microbial keratitis. Microb. Pathogenesis 2017, 104, 97–109.

[7]

Mallet, J. D.; Rochette, P. J. Ultraviolet light-induced cyclobutane pyrimidine dimers in rabbit eyes. Photochem. Photobiol. 2011, 87, 1363–1368.

[8]

Han, H. J.; Gao, Y. F.; Chai, M. Y.; Zhang, X. B.; Liu, S. R.; Huang, Y.; Jin, Q.; Grzybowski, A.; Ji, J.; Yao, K. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. J. Control. Release 2020, 327, 676–687.

[9]

Soiberman, U.; Kambhampati, S. P.; Wu, T.; Mishra, M. K.; Oh, Y.; Sharma, R.; Wang, J. X.; Al Towerki, A. E.; Yiu, S.; Stark, W. et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017, 125, 38–53.

[10]

Callegan, M. C.; O’Callaghan, R. J.; Hill, J. M. Pharmacokinetic considerations in the treatment of bacterial keratitis. Clin. Pharmacokinet. 1994, 27, 129–149.

[11]

Peng, C.; Sun, W. J.; Zhou, C. C.; Qiang, S. J.; Jiang, M. J.; Lam, J. W. Y.; Zhao, Z.; Kwok, R. T. K.; Cai, W. T.; Tang, B. Z. Vision redemption: Self-reporting AIEgens for combined treatment of bacterial keratitis. Biomaterials 2021, 279, 121227.

[12]

Bharti, S.; Kesavan, K. Phase-transition W/O microemulsions for ocular delivery: Evaluation of antibacterial activity in the treatment of bacterial keratitis. Ocul. Immunol. Inflamm. 2017, 25, 463–474.

[13]

Nguyen, V. N.; Yan, Y. X.; Zhao, J. Z.; Yoon, J. Heavy-atom-free Photosensitizers: From molecular design to applications in the photodynamic therapy of cancer. Acc. Chem. Res. 2021, 54, 207–220.

[14]

Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 2018, 106, 1098–1107.

[15]

Wang, L. Y.; Du, L.; Wang, M. M.; Wang, X.; Tian, S. H.; Chen, Y.; Wang, X. Y.; Zhang, J.; Nie, J.; Ma, G. P. Chitosan for constructing stable polymer-inorganic suspensions and multifunctional membranes for wound healing. Carbohydr. Polym. 2022, 285, 119209.

[16]

Wu, J. X.; Zheng, Y. J.; Jiang, S. B.; Qu, Y. C.; Wei, T.; Zhan, W. J.; Wang, L.; Yu, Q.; Chen, H. Two-in-one platform for high-efficiency intracellular delivery and cell harvest: When a photothermal agent meets a thermoresponsive polymer. ACS Appl. Mater. Interfaces 2019, 11, 12357–12366.

[17]

Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

[18]

Miao, X. X.; Yu, F.; Liu, K.; Lv, Z. S.; Deng, J. J.; Wu, T. L.; Cheng, X. Y.; Zhang, W.; Cheng, X. G.; Wang, X. L. High special surface area and “warm light” responsive ZnO: Synthesis mechanism, application and optimization. Bioact. Mater. 2022, 7, 181–191.

[19]

Jiang, J. H.; Pi, J.; Cai, J. Y. The advancing of zinc oxide Nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562.

[20]

Yi, C. X.; Yu, Z. H.; Ren, Q.; Liu, X.; Wang, Y.; Sun, X.; Yin, S. H.; Pan, J.; Huang, X. Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiag. Photodyn. Ther. 2020, 30, 101694.

[21]

Tang, Y.; Huang, Q. X.; Zheng, D. W.; Chen, Y.; Ma, L.; Huang, C.; Zhang, X. Z. Engineered Bdellovibrio bacteriovorus: A countermeasure for biofilm-induced periodontitis. Mater. Today 2022, 53, 71–83.

[22]
Söderberg, P. G. ; Talebizadeh, N. ; Yu, Z. ; Galichanin, K. Does infrared or ultraviolet light damage the lens? Eye 2016, 30, 241–246.
[23]

Taylor, H. R. Protect eyes from ultraviolet light to prevent cataract rather than retinal damage. JAMA 1989, 261, 3550.

[24]

Bose, B.; Najwa, A. R.; Shenoy P, S. Oxidative damages to eye stem cells, in response to, bright and ultraviolet light, their associated mechanisms, and salvage pathways. Mol. Biotechnol. 2019, 61, 145–152.

[25]

Raj, K. P.; Sadaiyandi, K.; Kennedy, A.; Sagadevan, S.; Chowdhury, Z. Z.; Johan, M. R. B.; Aziz, F. A.; Rafique, R. F.; Selvi, R. T.; Bala, R. R. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 2018, 13, 229.

[26]

Yu, X. H.; Liu, C. Z.; Meng, D. W.; Xie, J.; Wang, J. X. Investigations on the preparation and optical properties of Fe-doped sheet-like ZnO crystal. J. Funct. Mater. 2011, 42, 1324–1326,1331.

[27]

Pandiyarajan, T.; Mangalaraja, R. V.; Karthikeyan, B.; Udayabhaskar, R.; Contreras, D.; Sepulveda-Guzman, S.; Gracia-Pinilla, M. A. Influence of RE (Pr3+, Er3+, Nd3+) doping on structural, vibrational and enhanced persistent photocatalytic properties of ZnO nanostructures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120679.

[28]

Cheng, B. C.; Zhang, Z. D.; Liu, H. J.; Han, Z. H.; Xiao, Y. H.; Lei, S. J. Power- and energy-dependent photoluminescence of Eu3+ incorporated and segregated ZnO polycrystalline nanobelts synthesized by a facile combustion method followed by heat treatment. J. Mater. Chem. 2010, 20, 7821–7826.

[29]

Kim, K. K.; Park, I. K. Enhancement of visible light emission from Tb-doped ZnO nanorods grown on silicon substrate. J. Ceram. Process. Res. 2017, 18, 435–439.

[30]

Zhao, S. Y.; Xu, Y. Y.; Xu, W. Y.; Weng, Z. Z.; Cao, F.; Wan, X. Y.; Cui, T. C.; Yu, Y. J.; Liao, L.; Wang, X. L. Tremella-like ZnO@Col-I-decorated titanium surfaces with dual-light-defined broad-spectrum antibacterial and triple Osteogenic properties. ACS Appl. Mater. Interfaces 2020, 12, 30044–30051.

[31]

Zhang, G. N.; Yang, Y. Q.; Shi, J.; Yao, X. H.; Chen, W. Y.; Wei, X. C.; Zhang, X. Y.; Chu, P. K. Near-infrared light II-assisted rapid biofilm elimination platform for bone implants at mild temperature. Biomaterials 2021, 269, 120634.

[32]

Gao, Q.; Zhang, X.; Yin, W. Y.; Ma, D. Q.; Xie, C. J.; Zheng, L. R.; Dong, X. H.; Mei, L. Q.; Yu, J.; Wang, C. Z. et al. Functionalized MoS2 Nanovehicle with near-infrared laser-mediated nitric oxide release and Photothermal activities for advanced bacteria-infected wound therapy. Small 2018, 14, 1802290.

[33]

Fan, J.; He, N. Y.; He, Q J.; Liu, Y.; Ma, Y.; Fu, X.; Liu, Y. J.; Huang, P.; Chen, X. Y. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015, 7, 20055–20062.

[34]

Zhu, Y. W.; Wu, S. J.; Sun, Y. J.; Zou, X.; Zheng, L.; Duan, S.; Wang, J. L.; Yu, B. R.; Sui, R. F.; Xu, F. J. Bacteria-targeting photodynamic Nanoassemblies for efficient treatment of multidrug-resistant Biofilm infected Keratitis. Adv. Funct. Mater. 2022, 32, 2111066.

[35]

Wang, H. Y.; Pan, X. T.; Wang, X. T.; Wang, W. W.; Huang, Z. J.; Gu, K.; Liu, S.; Zhang, F. R.; Shen, H. Y.; Yuan, Q. P. et al. Degradable carbon-silica nanocomposite with immunoadjuvant property for dual-modality photothermal/photodynamic therapy. ACS Nano 2020, 14, 2847–2859.

[36]

Yang, L.; Feura, E. S.; Ahonen, M. J. R.; Schoenfisch, M. H. Nitric oxide-releasing macromolecular scaffolds for antibacterial applications. Adv. Healthcare Mater. 2018, 7, 1800155.

[37]

Hall, J. R.; Rouillard, K. R.; Suchyta, D. J.; Brown, M. D.; Ahonen, M. J. R.; Schoenfisch, M. H. Mode of nitric oxide delivery affects antibacterial action. ACS Biomater. Sci. Eng. 2020, 6, 433–441.

[38]

Sun, B.; Slomberg, D. L.; Chudasama, S. L.; Lu, Y.; Schoenfisch, M. H. Nitric oxide-releasing dendrimers as antibacterial agents. Biomacromolecules 2012, 13, 3343–3354.

[39]

Wei, C.; Zhu, M. F.; Petroll, W. M.; Robertson, D. M. Pseudomonas aeruginosa infectious keratitis in a high oxygen transmissible rigid contact lens rabbit model. Invest. Ophthalmol. Vis. Sci. 2014, 55, 5890–5899.

[40]

Marquart, M. E. Animal models of bacterial keratitis. J. Biomed. Biotechnol. 2011, 2011, 680642.

[41]

Qian, Y. X.; Deng, S.; Cong, Z. H.; Zhang, H. D.; Lu, Z. Y.; Shao, N.; Bhatti, S. A.; Zhou, C.; Cheng, J. G.; Gellman, S. H. et al. Secondary amine pendant β-peptide polymers displaying potent antibacterial activity and promising therapeutic potential in treating MRSA-induced wound infections and Keratitis. J. Am. Chem. Soc. 2022, 144, 1690–1699.

[42]

Wen, S. M.; Qin, C.; Shen, L. L.; Liu, D.; Zhu, S. Q.; Lin, Q. K. Surface self-assembly construction of therapeutic contact lens with bacterial “kill-releasing” and drug-reloading capabilities for efficient bacterial Keratitis treatment. ACS Biomater. Sci. Eng. 2022, 8, 1329–1341.

[43]

Luo, L. J.; Lin, T. Y.; Yao, C. H.; Kuo, P. Y.; Matsusaki, M.; Harroun, S. G.; Huang, C. C.; Lai, J. Y. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J. Colloid Interface Sci. 2019, 536, 112–126.

Nano Research
Pages 849-857
Cite this article:
Sun Y, Zhang W, Wang M, et al. Terbium-doped zinc oxide constructed dual-light-responsive nitric oxide-releasing platform for bacterial keratitis treatment. Nano Research, 2023, 16(1): 849-857. https://doi.org/10.1007/s12274-022-4744-1
Topics:

1270

Views

7

Crossref

4

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 11 May 2022
Revised: 30 June 2022
Accepted: 03 July 2022
Published: 17 August 2022
© Tsinghua University Press 2022
Return