AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface defect and lattice engineering of Bi5O7Br ultrathin nanosheets for efficient photocatalysis

Yunjing WangHongchen HeYunjiang WangMeili XieFeng JingXianhong YinFeilong Hu( )Yan Mi( )
Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
Show Author Information

Graphical Abstract

The simultaneous separation of bulk and surface photocharges is conducted to enhance photocatalytic activity by coupling the surface defects and lattice engineering of bismuth oxybromide. As that, the oxygen vacancy (OV)-assembled Bi5O7Br nanosheets leading to a notable enhancement of internal electric field (IEF) and optimizing generation of active oxygen species, both of them improved its photocatalytic degradation and mineralization efficiency.

Abstract

The effective separation and migration of photogenerated charge carriers in bulk and on the surface of photocatalysts will significantly promote photocatalytic efficiency. However, the synchronous regulation of photocharges on both counts is challenging. Herein, the simultaneous separation of bulk and surface photocharges is conducted to enhance photocatalytic activity by coupling the surface defects and lattice engineering of bismuth oxybromide. The depth-modulated Bi5O7Br ultrathin nanosheets with an abundance of bismuth in the crystal structure increased the internal electric field, which propelled the separation and migration of photocharges from bulk to the surface. Creation of oxygen vacancies (OVs) on the nanosheet surface forms local electric fields, which can stimulate the migration of charges to active sites on the catalyst surface. Therefore, the OV-assembled Bi5O7Br nanosheets demonstrated enhanced photocatalytic degradation efficiency under simulated solar-light illumination. This study proved the possibility of charge governing via electric field modulation based on an integrated strategy.

Electronic Supplementary Material

Download File(s)
12274_2022_4748_MOESM1_ESM.pdf (673.4 KB)

References

[1]

Zhang, Z. Z.; Zhao, Y. H.; Shen, J. T.; Pan, Z. W.; Guo, Y. F.; Wong, P. K.; Yu, H. B. Synthesis of 1D Bi12O17ClxBr2−x nanotube solid solutions with rich oxygen vacancies for highly efficient removal of organic pollutants under visible light. Appl. Catal. B:Environ. 2020, 269, 118774.

[2]

Zhou, C. Y.; Xu, P.; Lai, C.; Zhang, C.; Zeng, G. M.; Huang, D. L.; Cheng, M.; Hu, L.; Xiong, W. P.; Wen, X. F. et al. Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution. Chem. Eng. J. 2019, 359, 186–196.

[3]

Ferraz, N. P.; Nogueira, A. E.; Marcos, F. C. F.; Machado, V. A.; Rocca, R. R.; Assaf, E. M.; Asencios, Y. J. O. CeO2-Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020, 39, 230–240.

[4]

Fan, D. Q.; Lu, Y.; Zhang, H.; Xu, H. L.; Lu, C. H.; Tang, Y. C.; Yang, X. F. Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B:Environ. 2021, 295, 120285.

[5]

Zhang, M. L.; Yang, Y.; An, X. Q.; Hou, L. A. A critical review of g-C3N4-based photocatalytic membrane for water purification. Chem. Eng. J. 2021, 412, 128663.

[6]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[7]

Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

[8]

Zhang, J. Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 2000, 104, 7239–7253.

[9]

Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis. Adv. Mater. 2016, 28, 4059–4064.

[10]

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BIOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

[11]

Guo, J. G.; Liu, Y.; Hao, Y. J.; Li, Y. L.; Wang, X. J.; Liu, R. H.; Li, F. T. Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Appl. Catal. B:Environ. 2018, 224, 841–853.

[12]

Ouyang, W. X.; Teng, F.; Fang, X. S. High performance BIOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: The influences of self-induced inner electric fields in the BIOCl nanosheets. Adv. Funct. Mater. 2018, 28, 1707178.

[13]

Zhu, Z. J.; Huang, H. W.; Liu, L. Z.; Chen, F.; Tian, N.; Zhang, Y. H.; Yu, H. Chemically bonded α-Fe2O3/Bi4Mo8Cl dot-on-plate Z-scheme junction with strong internal electric field for selective photo-oxidation of aromatic alcohols. Angew. Chem., Int. Ed. 2022, 61, e202203519.

[14]

Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860–11864.

[15]

Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

[16]

Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

[17]

Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

[18]

Fu, F. Y.; Shown, I.; Li, C. S.; Raghunath, P.; Lin, T. Y.; Billo, T.; Wu, H. L.; Wu, C. I.; Chung, P. W.; Lin, M. C. et al. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 25186–25194.

[19]

Cui, P. Z.; Wang, J. L.; Wang, Z. M.; Chen, J.; Xing, X. R.; Wang, L. Z.; Yu, R. B. Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Res. 2016, 9, 593–601.

[20]

Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Photoreduction of CO2 on BiOCl nanoplates with the assistance of photoinduced oxygen vacancies. Nano Res. 2015, 8, 821–831.

[21]

Bai, Y.; Shi, X.; Wang, P. Q.; Wnag, L.; Zhang, K.; Zhou, Y.; Xie, H. Q.; Wang, J. N.; Ye, L. Q. BiOBrxI1−x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chem. Eng. J. 2019, 356, 34–42.

[22]

Wu, Z. H.; Shen, J.; Ma, N.; Li, Z. F.; Wu, M.; Xu, D. F.; Zhang, S. Y.; Feng, W. H.; Zhu, Y. F. Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Appl. Catal. B:Environ. 2021, 286, 119937.

[23]

Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H. Q.; Zhou, Y.; Ye, L. Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482.

[24]

Di, J.; Xia, J. X.; Ji, M. X.; Yin, S.; Li, H. P.; Xu, H.; Zhang, Q.; Li, H. M. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J. Mater. Chem. A 2015, 3, 15108–15118.

[25]

Wang, C. Y.; Zhang, X.; Zhang, Y. J.; Chen, J. J.; Huang, G. X.; Jiang, J.; Wang, W. K.; Yu, H. Q. Direct generation of hydroxyl radicals over bismuth oxybromide nanobelts with tuned band structure for photocatalytic pollutant degradation under visible light irradiation. Appl. Catal. B:Environ. 2018, 237, 464–472.

[26]

Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.

[27]

Wang, M. Y.; Wang, B.; Huang, F.; Lin, Z. Q. Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angew. Chem., Int. Ed. 2019, 58, 7526–7536.

[28]

Li, X. B.; Xiong, J.; Xu, Y.; Feng, Z. J.; Huang, J. T. Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chin. J. Catal. 2019, 40, 424–433.

[29]

Xiong, J.; Di, J.; Li, H. M. Interface engineering in low-dimensional bismuth-based materials for photoreduction reactions. J. Mater. Chem. A 2021, 9, 2662–2677.

[30]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[31]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[32]
Wang, H. J.; Wu, X. D.; Liu, G. Y.; Wu, S. Y.; Xu, R. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Res. , in press,DOI: 10.1007/s12274-022-4199-4.
[33]

Wang, L.; Liu, G. P.; Wang, B.; Chen, X.; Wang, C. T.; Lin, Z. X.; Xia, J. X.; Li, H. M. Oxygen vacancies engineering-mediated BiOBr atomic layers for boosting visible light-driven photocatalytic CO2 reduction. Solar RRL 2021, 5, 2000480.

[34]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[35]

Ji, M. X.; Chen, R.; Di, J.; Liu, Y. L.; Li, K.; Chen, Z. G.; Xia, J. X.; Li, H. M. Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. J. Colloid Interface Sci. 2019, 533, 612–620.

[36]

Ye, L. Q.; Jin, X. L.; Liu, C.; Ding, C. H.; Xie, H. Q.; Chu, K. H.; Wong, P. K. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B:Environ. 2016, 187, 281–290.

[37]

Wang, S. Y.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y. G.; Meng, X. G.; Yang, Z. X.; Chen, H.; Ye, J. H. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774.

[38]

Guo, Y.; Shi, W. X.; Zhu, Y. F.; Xu, Y. P.; Cui, F. Y. Enhanced photoactivity and oxidizing ability simultaneously via internal electric field and valence band position by crystal structure of bismuth oxyiodide. Appl. Catal. B:Environ. 2020, 262, 118262.

[39]

Xiong, X. Y.; Zhou, T. F.; Liu, X. F.; Ding, S. P.; Hu, J. C. Surfactant-mediated synthesis of single-crystalline Bi3O4Br nanorings with enhanced photocatalytic activity. J. Mater. Chem. A 2017, 5, 15706–15713.

[40]

Tian, N.; Huang, H. W.; Wang, S. B.; Zhang, T. R.; Du, X.; Zhang, Y. H. Facet-charge-induced coupling dependent interfacial photocharge separation: A case of BiOI/g-C3N4 p-n junction. Appl. Catal. B:Environ. 2020, 267, 118697.

[41]

Li, P. S.; Zhou, Z.; Wang, Q.; Guo, M.; Chen, S. W.; Low, J.; Long, R.; Liu, W.; Ding, P. R.; Wu, Y. Y. et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 2020, 142, 12430–12439.

[42]

Zhou, R. R.; Zhang, D. P.; Wang, P. F.; Huang, Y. H. Regulation of excitons dissociation in AgI/Bi3O4Br for advanced reactive oxygen species generation towards photodegradation. Appl. Catal. B:Environ. 2021, 285, 119820.

[43]

Li, R.; Feng, J. Q.; Zhang, X. C.; Xie, F. X.; Liu, J. X.; Zhang, C. M.; Wang, Y. W.; Yue, X. P.; Fan, C. M. In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability. Sep. Purif. Technol. 2020, 247, 117007.

[44]

Wang, C. Y.; Zhang, X.; Qiu, H. B.; Wang, W. K.; Huang, G. X.; Jiang, J.; Yu, H. Q. Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Bi12O17Cl2 nanobelts. Appl. Catal. B:Environ. 2017, 200, 659–665.

[45]

Han, X.; Wang, S. B.; Huang, H. W.; Zhang, Y. H. Hydroxyl radicals and sulfate radicals synergistically boosting the photocatalytic and mineralization ability of 1D-2D Bi5O7I/NiFe-LDH heterojunction. Appl. Surf. Sci. 2021, 540, 148237.

Nano Research
Pages 248-255
Cite this article:
Wang Y, He H, Wang Y, et al. Surface defect and lattice engineering of Bi5O7Br ultrathin nanosheets for efficient photocatalysis. Nano Research, 2023, 16(1): 248-255. https://doi.org/10.1007/s12274-022-4748-x
Topics:

1041

Views

9

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 10 June 2022
Revised: 06 July 2022
Accepted: 07 July 2022
Published: 19 August 2022
© Tsinghua University Press 2022
Return