AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Real-time evolution of up-conversion nanocrystals from tailored metastable intermediates

Peng Zhang1,2Xue Yu3( )Ping Xia3Zhenzhen Cui1Jianhong Yi1Caiju Li1Peng Song1Feng Zhao3Ting Wang4( )Jianbei Qiu1Xuhui Xu1( )
Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
Yunnan AFPN Technology Company Limited, Kunming 650093, China
School of Mechanical Engineering, Institute for Advanced Study, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu 610106, China
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
Show Author Information

Graphical Abstract

The tailored metastable intermediates are employed for monitoring the nucleation-growthdegradation processes of the up-conversion nanocrystals (UCNCs) in real-time. The growth dynamics processes, including the nucleation, crystallization, growth, and degradation of the UCNCs are systemically investigated by modulating the electron beam density, which shed a light on understanding the growth evolution dynamics of the UCNCs.

Abstract

In-situ observation of the growth and decomposition processes is significantly important for guiding the fabrication of up-conversion nanocrystals (UCNCs) with high performance. However, the high crystallization energy and rapid nucleation rate of the corresponding crystals make real-time observation still a huge challenge. Herein, the in-situ nucleation-growth-degradation processes of the UCNCs are investigated by employing tailored metastable intermediates, which possess a slowing-down nucleation rate under electron beam irradiation. The non-classical nucleation processes of the UCNCs, containing the coalescence of clusters and the subsequent crystallization, are demonstrated. Moreover, the Ostwald ripening and oriented attachment processes, which determine the particle size and morphology, are unambiguously recorded. Furthermore, the degrading process of the UCNCs is observed to be triggered by surface defects. Our work provides an insight into the real-time evolution dynamics of the UCNCs, which further sheds light on the fabrication of nano-sized up-conversion phosphors.

Electronic Supplementary Material

Video
12274_2022_4750_MOESM2.mp4
12274_2022_4750_MOESM3.mp4
Download File(s)
12274_2022_4750_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Su, Q. Q.; Feng, W.; Yang, D. P.; Li, F. Y. Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc. Chem. Res. 2017, 50, 32–40.

[2]

Hou, Z. Y.; Deng, K. R.; Li, C. X.; Deng, X. R.; Lian, H. Z.; Cheng, Z. Y.; Jin, D. Y.; Lin, J. 808 nm light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd3+-sensitized upconversion emission with enhanced anti-tumor efficacy. Biomaterials 2016, 101, 32–46.

[3]

Schulze, T. F.; Schmidt, T. W. Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 2015, 8, 103–125.

[4]

Zhou, J. J.; Chizhik, A. I.; Chu, S.; Jin, D. Y. Single-particle spectroscopy for functional nanomaterials. Nature 2020, 579, 41–50.

[5]

Chen, G. Y.; Qju, H. L.; Prasad, P. N.; Chen, X. Y. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214.

[6]

Zheng, K. Z.; Loh, K. Y.; Wang, Y.; Chen, Q. S.; Fan, J. Y.; Jung, T.; Nam, S. H.; Suh, Y. D.; Liu, X. G. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today 2019, 29, 100797.

[7]

Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

[8]

Lu, E.; Pichaandi, J.; Rastogi, C. K.; Arnett, L. P.; Winnik, M. A. Influence of cubic-to-hexagonal-phase transformation on the uniformity of NaLnF4 (Ho, Tb, Eu, Sm) nanoparticles. Chem. Mater. 2019, 31, 9742–9749.

[9]

Li, D. D.; Lai, W. Y.; Shao, Q. Y.; Huang, W. Facile synthesis of ultrasmall hexagonal NaYF4: Yb3+, Er3+ upconversion nanocrystals through temperature oscillation. Inorg. Chem. Front. 2017, 4, 1211–1214.

[10]

Shen, J.; Chen, G. Y.; Ohulchanskyy, T. Y.; Kesseli, S. J.; Buchholz, S.; Li, Z. P.; Prasad, P. N.; Han, G. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4: Yb, Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 2013, 9, 3213–3217.

[11]

Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W·cm–2 irradiance. Nat. Photonics 2018, 12, 548–553.

[12]

Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

[13]

Shen, B.; Cheng, S. M.; Gu, Y. Y.; Ni, D. R.; Gao, Y. L.; Su, Q. Q.; Feng, W.; Li, F. Y. Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles. Nanoscale 2017, 9, 1964–1971.

[14]

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

[15]

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

[16]

Li, Y. X.; Zang, L.; Jacobs, D. L.; Zhao, J.; Yue, X.; Wang, C. Y. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. Nat Commun. 2017, 8, 14462.

[17]

Nielsen, M. H.; Aloni, S.; De Yoreo, J. J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 2014, 345, 1158–1162.

[18]

Qin, F. Y.; Wang, Z. W.; Wang, Z. L. Anomalous growth and coalescence dynamics of hybrid perovskite nanoparticles observed by liquid-cell transmission electron microscopy. ACS Nano 2016, 10, 9787–9793.

[19]

Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.

[20]

Yuk, J. M.; Zhou, Q.; Chang, J.; Ercius, P.; Alivisatos, A. P.; Zettl, A. Real-time observation of water-soluble mineral precipitation in aqueous solution by in situ high-resolution electron microscopy. ACS Nano 2016, 10, 88–92.

[21]

Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.

[22]

Xin, H. L.; Zheng, H. M. In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett. 2012, 12, 1470–1474.

[23]

Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811–4819.

[24]

Wang, C. H.; Shokuhfar, T.; Klie, R. F. Precise in situ modulation of local liquid chemistry via electron irradiation in nanoreactors based on graphene liquid cells. Adv. Mater. 2016, 28, 7716–7722.

[25]

Gonzalez-Martinez, I. G.; Bachmatiuk, A.; Bezugly, V.; Kunstmann, J.; Gemming, T.; Liu, Z.; Cuniberti, G.; Rummeli, M. H. Electron-beam induced synthesis of nanostructures: A review. Nanoscale 2016, 8, 11340–11362.

[26]

Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Size- and phase-controlled synthesis of monodisperse NaYF4: Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J. Phys. Chem. C 2007, 111, 13730–13739.

[27]

Liu, D.; Yan, J. Y.; Wang, K.; Wang, Y. D.; Luo, G. S. Continuous synthesis of ultrasmall core−shell upconversion nanoparticles via a flow chemistry method. Nano Res. 2022, 15, 1199–1204.

[28]

Dey, A.; Bomans, P. H. H.; Müller, F. A.; Will, J.; Frederik, P. M.; de With, G.; Sommerdijk, N. A. J. M. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 2010, 9, 1010–1014.

[29]

Dey, A.; de With, G.; Sommerdijk, N. A. J. M. In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem. Soc. Rev. 2010, 39, 397–409.

[30]

Baumgardner, W. J.; Yu, Y. C.; Hovden, R.; Honrao, S.; Hennig, R. G.; Abruña, H. D.; Muller, D.; Hanrath, T. Nanoparticle metamorphosis: An in situ high-temperature transmission electron microscopy study of the structural evolution of heterogeneous Au: Fe2O3 nanoparticles. ACS Nano 2014, 8, 5315–5322.

[31]

Zhang, T. H.; Liu, X. Y. How does a transient amorphous precursor template crystallization. J. Am. Chem. Soc. 2007, 129, 13520–13526.

[32]

Wang, T.; Yang, Z.; Yang, L. L.; Yu, X.; Sun, L. T.; Qiu, J. B.; Zhou, D. C.; Lu, W.; Yu, S. F.; Lin, Y. et al. Atomic-scale insights into the dynamics of growth and degradation of all-inorganic perovskite nanocrystals. J. Phys. Chem. Lett. 2020, 11, 4618–4624.

[33]

Woehl, T. J.; Evans, J. E.; Arslan, I.; Ristenpart, W. D.; Browning, N. D. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 2012, 6, 8599–8610.

[34]

Owen, J. S.; Chan, E. M.; Liu, H. T.; Alivisatos, A. P. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. J. Am. Chem. Soc. 2010, 132, 18206–18213.

[35]

Wang, T.; Lu, W.; Xu, X. H.; Qiu, J. B.; Yu, S. F. Study of crystallization and coalescence of nanocrystals in amorphous glass at high temperature. Inorg. Chem. 2019, 58, 9500–9504.

[36]

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

[37]

Hu, S. L.; Li, W. X. Influence of particle size distribution on lifetime and thermal stability of ostwald ripening of supported particles. ChemCatChem 2018, 10, 2900–2907.

[38]

Voorhees, P. W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.

[39]

Jiang, Y.; Wang, Y.; Zhang, Y. Y.; Zhang, Z. F.; Yuan, W. T.; Sun, C. H.; Wei, X.; Brodsky, C. N.; Tsung, C. K.; Li, J. X. et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Res. 2014, 7, 308–314.

[40]

Yuan, W. T.; Zhang, D. W.; Ou, Y.; Fang, K.; Zhu, B. E.; Yang, H. S.; Hansen, T. W.; Wagner, J. B.; Zhang, Z.; Gao, Y. et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem., Int. Ed. 2018, 57, 16827–16831.

[41]

Li, G. X.; Fang, K.; Chen, Y. Z.; Ou, Y.; Mao, S. J.; Yuan, W. T.; Wang, Y.; Yang, H. S.; Zhang, Z.; Wang, Y. Unveiling the gas-dependent sintering behavior of Au-TiO2 catalysts via environmental transmission electron microscopy. J. Catal. 2020, 388, 84–90.

Nano Research
Pages 1552-1557
Cite this article:
Zhang P, Yu X, Xia P, et al. Real-time evolution of up-conversion nanocrystals from tailored metastable intermediates. Nano Research, 2023, 16(1): 1552-1557. https://doi.org/10.1007/s12274-022-4750-3
Topics:

915

Views

2

Crossref

1

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 24 April 2022
Revised: 18 June 2022
Accepted: 07 July 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return