Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Although the performance of the self-standing electrode has been enhanced for aqueous zinc-ion batteries (AZIBs), it is necessary to explore and analyse the deep modification mechanism (especially interface effects). Herein, density functional theory (DFT) calculations are applied to investigate the high-performance cathode based on the VO2/carbon cloth composites with heterostructures interface (H-VO2@CC). The adsorption energy comparisons and electron structure analyses verify that H-VO2@CC has extra activated sites at the interface, enhanced electrical conductivity, and structural stability for achieving high-performance AZIBs due to the presence of built-in electric field at the interfaces. Accordingly, the designed self-standing H-VO2@CC cathode delivers higher rate capacity, longer-life cyclability, and faster electronic/ion transmission kinetics benefiting from the synergistic effects. The risks of active material shedding and dissolution during the dis/charge process of two cathodes were evaluated via ex-situ ultraviolet–visible (UV–vis) spectrum and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique. Finally, this investigation also explores the charge storage mechanism of H-VO2@CC through various ex-situ and in-situ characterization techniques. This finding can shed light on the significant potential of heterostructures interface engineering in practical applications and provide a valuable direction for the development of cathode materials for AZIBs and other metal-ion batteries.
Xiong, F. Y.; Jiang, Y. L.; Cheng, L.; Yu, R. H.; Tan, S. S.; Tang, C.; Zuo, C. L.; An, Q. Y.; Zhao, Y. L.; Gaumet, J. J. et al. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdiscip. Mater. 2022, 1, 140–147.
Wang, S.; Huang, S.; Yao, M. J.; Zhang, Y.; Niu, Z. Q. Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery. Angew. Chem., Int. Ed. 2020, 59, 11800–11807.
Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.
Luo, P.; Huang, Z.; Liu, G. Y.; Liu, C.; Zhang, P. P.; Xiao, Y.; Tang, W.; Zhang, W. W.; Tang, H.; Dong, S. J. Oxygen vacancy engineering boosted manganese vanadate toward high stability aqueous zinc ion batteries. J. Alloys Compd. 2022, 919, 165804.
Zhang, W. W.; Xiao, Y.; Zuo, C. L.; Tang, W.; Liu, G. Y.; Wang, S. Y.; Cai, W. Y.; Dong, S. J.; Luo, P. Adjusting the valence state of vanadium in VO2(B) by extracting oxygen anions for high-performance aqueous zinc-ion batteries. ChemSusChem 2021, 14, 971–978.
Luo, P.; Zhang, W. W.; Wang, S. Y.; Liu, G. Y.; Xiao, Y.; Zuo, C. L.; Tang, W.; Fu, X. D.; Dong, S. J. Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries. J. Alloys Compd. 2021, 884, 161147.
Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.
Liu, G. Y.; Xiao, Y.; Zhang, W. W.; Tang, W.; Zuo, C. L.; Zhang, P. P.; Dong, S. J.; Luo, P. Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries. Nanotechnology 2021, 32, 315405.
Kim, J.; Lee, S. H.; Park, C.; Kim, H. S.; Park, J. H.; Chung, K. Y.; Ahn, H. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: Cathode material design for rechargeable aqueous zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2100005.
Zhang, W. W.; Tang, C.; Lan, B. X.; Chen, L. N.; Tang, W.; Zuo, C. L.; Dong, S. J.; An, Q. Y.; Luo, P. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance.
Liu, S. D.; Kang, L.; Kim, J. M.; Chun, Y. T.; Zhang, J.; Jun, S. C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 2020, 10, 2000477.
Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries.
Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019, 17, 143–150.
Liu, N. N.; Wu, X.; Fan, L. S.; Gong, S.; Guo, Z. K.; Chen, A. S.; Zhao, C. Y.; Mao, Y. C.; Zhang, N. Q.; Sun, K. N. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. 2020, 32, e1908420.
Chen, L. N.; Ruan, Y. S.; Zhang, G. B.; Wei, Q. L.; Jiang, Y. L.; Xiong, T. F.; He, P.; Yang, W.; Yan, M. Y.; An, Q. Y. et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem. Mater. 2019, 31, 699–706.
Xiong, F. Y.; Tan, S. S.; Yao, X. H.; An, Q. Y.; Mai, L. Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Mater. Today 2021, 45, 169–190.
Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.
Chen, M. Z.; Hua, W. B.; Xiao, J.; Zhang, J. L.; Lau, V. W. H.; Park, M.; Lee, G. H.; Lee, S.; Wang, W. L.; Peng, J. et al. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J. Am. Chem. Soc. 2021, 143, 18091–18102.
Zhang, S. P.; Ling, F. X.; Wang, L. F.; Xu, R.; Ma, M. Z.; Cheng, X. L.; Bai, R. L.; Shao, Y.; Huang, H. J.; Li, D. J. et al. An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 2022, 34, 2201420.
Shen, Y. H.; Jiang, Y. L.; Yang, Z. Z.; Dong, J.; Yang, W.; An, Q. Y.; Mai, L. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage. Adv. Sci. 2022, 9, 2104504.
Sha, D. W.; Lu, C. J.; He, W.; Ding, J. X.; Zhang, H.; Bao, Z. H.; Cao, X.; Fan, J. C.; Dou, Y.; Pan, L. et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 2022, 16, 2711–2720.
Dong, Y. L.; Yan, C. Z.; Zhao, H. P.; Lei, Y. Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries. Small Struct. 2022, 3, 2100221.
Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081.
Zhao, X.; Zhao, Y. D.; Liu, Z. H.; Yang, Y.; Sui, J.; Wang, H. E.; Cai, W.; Cao, G. Z. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem. Eng. J. 2018, 354, 1164–1173.
Lu, X. Y.; Shi, Y. S.; Tang, D. M.; Lu, X.; Wang, Z. L.; Sakai, N.; Ebina, Y.; Taniguchi, T.; Ma, R. Z.; Sasaki, T. et al. Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage. ACS Nano 2022, 16, 4775–4785.
Luo, W.; Li, F.; Li, Q. D.; Wang, X. P.; Yang, W.; Zhou, L.; Mai, L. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 2018, 10, 7201–7207.
Yin, B. S.; Zhang, S. W.; Ke, K.; Xiong, T.; Wang, Y. M.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z. B.; Xue, J. M. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale 2019, 11, 19723–19728.
Zhu, C. Y.; Fang, G. Z.; Zhou, J.; Guo, J. H.; Wang, Z. Q.; Wang, C.; Li, J. Y.; Tang, Y.; Liang, S. Q. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677–9683.
Tamilselvan, M.; Sreekanth, T. V. M.; Yoo, K.; Kim, J. Binder-free coaxially grown V6O13 nanobelts on carbon cloth as cathodes for highly reversible aqueous zinc ion batteries. Appl. Surface Sci. 2020, 529, 147077.
Zhang, A. T.; Yue, L. J.; Jia, D. D.; Cui, L.; Wei, D.; Huang, W. G.; Liu, R.; Liu, Y.; Yang, W. R.; Liu, J. Q. Cobalt/nickel ions-assisted synthesis of laminated CuO nanospheres based on Cu(OH)2 nanorod arrays for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 2591–2600.
Zhang, A. T.; Zong, H. W.; Fu, H. C.; Wang, L. H.; Cao, X. Y.; Zhong, Y. X.; Liu, B. P.; Liu, J. Q. Controllable synthesis of nickel doped hierarchical zinc MOF with tunable morphologies for enhanced supercapability. J. Colloid. Interface Sci. 2022, 618, 375–385.
He, P. G.; Liu, J. H.; Zhao, X. D.; Ding, Z. P.; Gao, P.; Fan, L. Z. A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. J. Mater. Chem. A 2020, 8, 10370–10376.
Wang, Z. H.; Liang, P.; Zhang, R. G.; Liu, Z. M.; Li, W. Y.; Pan, Z. G.; Yang, H.; Shen, X. D.; Wang, J. Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries. Appl. Surface Sci. 2021, 562, 150196.
De Juan-Corpuz, L. M.; Corpuz, R. D.; Somwangthanaroj, A.; Nguyen, M. T.; Yonezawa, T.; Ma, J. M.; Kheawhom, S. Binder-free centimeter-long V2O5 nanofibers on carbon cloth as cathode material for zinc-ion batteries. Energies 2019, 13, 31.
Li, X. F.; Yang, L. Y.; Mi, H. Y.; Li, H. Z.; Zhang, M.; Abliz, A.; Zhao, F. J.; Wang, S. Y.; Li, H. B. VO2(B)@carbon fiber sheet as a binder-free flexible cathode for aqueous Zn-ion batteries. CrystEngComm 2021, 23, 8650–8659.
Li, S. T.; Liu, G.; Liu, J.; Lu, Y. K.; Yang, Q.; Yang, L. Y.; Yang, H. R.; Liu, S. L.; Lei, M.; Han, M. Carbon fiber cloth@VO2(B): Excellent binder-free flexible electrodes with ultrahigh mass-loading. J. Mater. Chem. A 2016, 4, 6426–6432.
Guo, D. L.; Qin, J. W.; Yin, Z. G.; Bai, J. M.; Sun, Y. K.; Cao, M. H. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2018, 45, 136–147.
Tamilselvan, M.; Sreekanth, T. V. M.; Yoo, K.; Kim, J. Ultrathin ammonium vanadate nanoflakes on carbon fiber—A binder-free high-rate capability cathode for aqueous medium zinc ion storage. J. Alloys Compd. 2021, 876, 160130.
Wang, N.; Fei, J.; Li, J. Y.; Xu, Z. W.; Zheng, X. H.; Huang, J. F.; Wang, Y. Regulating the chemical bond of carbon cloth for growing uniform Sb2O5 as high-performance sodium ion batteries anode. J. Electroanal. Chem. 2021, 892, 115275.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Wang, J. J.; Wang, J. G.; Qin, X. P.; Wang, Y. A.; You, Z. Y.; Liu, H. Y.; Shao, M. H. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance. ACS Appl. Mater. Interfaces 2020, 12, 34949–34958.
Cai, Y.; Chua, R.; Kou, Z. K.; Ren, H.; Yuan, D.; Huang, S. Z.; Kumar, S.; Verma, V.; Amonpattaratkit, P.; Srinivasan, M. Boosting Zn-ion storage performance of bronze-type VO2 via Ni-mediated electronic structure engineering. ACS Appl. Mater. Interfaces 2020, 12, 36110–36118.
Li, Z. Q.; Ren, Y. K.; Mo, L.; Liu, C. F.; Hsu, K.; Ding, Y. C.; Zhang, X. X.; Li, X. L.; Hu, L. H.; Ji, D. H. et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020, 14, 5581–5589.
Brito, W. H.; Aguiar, M. C. O.; Haule, K.; Kotliar, G. Metal−insulator transition in VO2: A DFT + DMFT perspective. Phys. Rev. Lett. 2016, 117, 056402.
Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.
Huang, H. H.; Zhao, G. Y.; Sun, X.; Yu, X. B.; Liu, C.; Shen, X. J.; Wang, M.; Lyu, P. B.; Zhang, N. Q. Built-in electric field enhanced ionic transport kinetics in the T-Nb2O5@MoO2 heterostructure. J. Mater. Chem. A 2021, 9, 22854–22860.
Zhang, B. H.; Liu, Y.; Wu, X. W.; Yang, Y. Q.; Chang, Z.; Wen, Z. B.; Wu, Y. P. An aqueous rechargeable battery based on zinc anode and Na095MnO2. Chem. Commun. 2014, 50, 1209–1211.
Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.
Qin, H. G.; Chen, L. L.; Wang, L. M.; Chen, X.; Yang, Z. H. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries.
Liu, Y.; Hu, P.; Liu, H.; Wu, X.; Zhi, C. Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Mater. Today Energy 2020, 17, 100431.
Wei, T. Y.; Li, Q.; Yang, G. Z.; Wang, C. X. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 2018, 6, 8006–8012.
Liu, S. C.; He, J. F.; Liu, D. S.; Ye, M. H.; Zhang, Y. F.; Qin, Y. L.; Li, C. C. Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Storage Mater. 2022, 49, 93–101.
Li, Z. L.; Ganapathy, S.; Xu, Y. L.; Zhou, Z.; Sarilar, M.; Wagemaker, M. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 2019, 9, 1900237.
Shi, Z. L.; Ru, Q.; Pan, Z. K.; Zheng, M. H.; Ling, F. C. C.;Wei, L. Flexible free-standing VO2/MXene conductive films as cathodes for quasi-solid-state zinc-ion batteries. ChemElectroChem 2021, 8, 1091–1097.
Shuai, B. B.; Zhou, C.; Pi, Y. Q.; Xu, X. Atomic layer-deposited ZnO layer on hydrated vanadium dioxide cathodes against vanadium dissolution for stable zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 6139–6145.
Huang, S. M.; He, S. G.; Qin, H. Q.; Hou, X. H. Oxygen defect hydrated vanadium dioxide/graphene as a superior cathode for aqueous Zn batteries. ACS Appl. Mater. Interfaces 2021, 13, 44379–44388.