AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Accelerated ion/electron transport kinetics and increased active sites via local internal electric fields in heterostructured VO2–carbon cloth for enhanced zinc-ion storage

Ping Luo1Wenwei Zhang1,2( )Wanyue Cai1Zhen Huang1Gangyuan Liu1Chang Liu1Shiyu Wang1Feng Chen1Lixue Xia3( )Yan Zhao3( )Shijie Dong1,4Lu Xia1
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei Engineering Laboratory of Automotive Lightweight Materials and Processing, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Wuhan Polytechnic University, Wuhan 430023, China
Show Author Information

Graphical Abstract

The built-in electrical field was constructed at the heterostructured VO2–carbon cloth to accelerate ion/electron transport kinetics and increase active sites for aqueous zinc-ion storage for the first time.

Abstract

Although the performance of the self-standing electrode has been enhanced for aqueous zinc-ion batteries (AZIBs), it is necessary to explore and analyse the deep modification mechanism (especially interface effects). Herein, density functional theory (DFT) calculations are applied to investigate the high-performance cathode based on the VO2/carbon cloth composites with heterostructures interface (H-VO2@CC). The adsorption energy comparisons and electron structure analyses verify that H-VO2@CC has extra activated sites at the interface, enhanced electrical conductivity, and structural stability for achieving high-performance AZIBs due to the presence of built-in electric field at the interfaces. Accordingly, the designed self-standing H-VO2@CC cathode delivers higher rate capacity, longer-life cyclability, and faster electronic/ion transmission kinetics benefiting from the synergistic effects. The risks of active material shedding and dissolution during the dis/charge process of two cathodes were evaluated via ex-situ ultraviolet–visible (UV–vis) spectrum and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique. Finally, this investigation also explores the charge storage mechanism of H-VO2@CC through various ex-situ and in-situ characterization techniques. This finding can shed light on the significant potential of heterostructures interface engineering in practical applications and provide a valuable direction for the development of cathode materials for AZIBs and other metal-ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_4753_MOESM1_ESM.pdf (3 MB)

References

[1]

Xiong, F. Y.; Jiang, Y. L.; Cheng, L.; Yu, R. H.; Tan, S. S.; Tang, C.; Zuo, C. L.; An, Q. Y.; Zhao, Y. L.; Gaumet, J. J. et al. Low-strain TiP2O7 with three-dimensional ion channels as long-life and high-rate anode material for Mg-ion batteries. Interdiscip. Mater. 2022, 1, 140–147.

[2]

Wang, S.; Huang, S.; Yao, M. J.; Zhang, Y.; Niu, Z. Q. Engineering active sites of polyaniline for AlCl2+ storage in an aluminum-ion battery. Angew. Chem., Int. Ed. 2020, 59, 11800–11807.

[3]

Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

[4]

Luo, P.; Huang, Z.; Liu, G. Y.; Liu, C.; Zhang, P. P.; Xiao, Y.; Tang, W.; Zhang, W. W.; Tang, H.; Dong, S. J. Oxygen vacancy engineering boosted manganese vanadate toward high stability aqueous zinc ion batteries. J. Alloys Compd. 2022, 919, 165804.

[5]

Zhang, W. W.; Xiao, Y.; Zuo, C. L.; Tang, W.; Liu, G. Y.; Wang, S. Y.; Cai, W. Y.; Dong, S. J.; Luo, P. Adjusting the valence state of vanadium in VO2(B) by extracting oxygen anions for high-performance aqueous zinc-ion batteries. ChemSusChem 2021, 14, 971–978.

[6]

Luo, P.; Zhang, W. W.; Wang, S. Y.; Liu, G. Y.; Xiao, Y.; Zuo, C. L.; Tang, W.; Fu, X. D.; Dong, S. J. Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries. J. Alloys Compd. 2021, 884, 161147.

[7]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[8]

Liu, G. Y.; Xiao, Y.; Zhang, W. W.; Tang, W.; Zuo, C. L.; Zhang, P. P.; Dong, S. J.; Luo, P. Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries. Nanotechnology 2021, 32, 315405.

[9]

Kim, J.; Lee, S. H.; Park, C.; Kim, H. S.; Park, J. H.; Chung, K. Y.; Ahn, H. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: Cathode material design for rechargeable aqueous zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2100005.

[10]
ZhangW. W.TangC.LanB. X.ChenL. N.TangW.ZuoC. L.DongS. J.AnQ. Y.LuoP. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance J. Alloys Compd.202081915297110.1016/j.jallcom.2019.152971

Zhang, W. W.; Tang, C.; Lan, B. X.; Chen, L. N.; Tang, W.; Zuo, C. L.; Dong, S. J.; An, Q. Y.; Luo, P. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J. Alloys Compd. 2020, 819, 152971.

[11]

Liu, S. D.; Kang, L.; Kim, J. M.; Chun, Y. T.; Zhang, J.; Jun, S. C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 2020, 10, 2000477.

[12]
JiaD. D.ZhengK.SongM.TanH.ZhangA. T.WangL. H.YueL. J.LiD.LiC. W.LiuJ. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteriesNano Res.20201321522410.1007/s12274-019-2603-5

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

[13]

Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019, 17, 143–150.

[14]

Liu, N. N.; Wu, X.; Fan, L. S.; Gong, S.; Guo, Z. K.; Chen, A. S.; Zhao, C. Y.; Mao, Y. C.; Zhang, N. Q.; Sun, K. N. Intercalation pseudocapacitive Zn2+ storage with hydrated vanadium dioxide toward ultrahigh rate performance. Adv. Mater. 2020, 32, e1908420.

[15]

Chen, L. N.; Ruan, Y. S.; Zhang, G. B.; Wei, Q. L.; Jiang, Y. L.; Xiong, T. F.; He, P.; Yang, W.; Yan, M. Y.; An, Q. Y. et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem. Mater. 2019, 31, 699–706.

[16]

Xiong, F. Y.; Tan, S. S.; Yao, X. H.; An, Q. Y.; Mai, L. Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Mater. Today 2021, 45, 169–190.

[17]

Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

[18]

Chen, M. Z.; Hua, W. B.; Xiao, J.; Zhang, J. L.; Lau, V. W. H.; Park, M.; Lee, G. H.; Lee, S.; Wang, W. L.; Peng, J. et al. Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries. J. Am. Chem. Soc. 2021, 143, 18091–18102.

[19]

Zhang, S. P.; Ling, F. X.; Wang, L. F.; Xu, R.; Ma, M. Z.; Cheng, X. L.; Bai, R. L.; Shao, Y.; Huang, H. J.; Li, D. J. et al. An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 2022, 34, 2201420.

[20]

Shen, Y. H.; Jiang, Y. L.; Yang, Z. Z.; Dong, J.; Yang, W.; An, Q. Y.; Mai, L. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage. Adv. Sci. 2022, 9, 2104504.

[21]

Sha, D. W.; Lu, C. J.; He, W.; Ding, J. X.; Zhang, H.; Bao, Z. H.; Cao, X.; Fan, J. C.; Dou, Y.; Pan, L. et al. Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 2022, 16, 2711–2720.

[22]

Dong, Y. L.; Yan, C. Z.; Zhao, H. P.; Lei, Y. Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries. Small Struct. 2022, 3, 2100221.

[23]

Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081.

[24]

Zhao, X.; Zhao, Y. D.; Liu, Z. H.; Yang, Y.; Sui, J.; Wang, H. E.; Cai, W.; Cao, G. Z. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem. Eng. J. 2018, 354, 1164–1173.

[25]

Lu, X. Y.; Shi, Y. S.; Tang, D. M.; Lu, X.; Wang, Z. L.; Sakai, N.; Ebina, Y.; Taniguchi, T.; Ma, R. Z.; Sasaki, T. et al. Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage. ACS Nano 2022, 16, 4775–4785.

[26]

Luo, W.; Li, F.; Li, Q. D.; Wang, X. P.; Yang, W.; Zhou, L.; Mai, L. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 2018, 10, 7201–7207.

[27]

Yin, B. S.; Zhang, S. W.; Ke, K.; Xiong, T.; Wang, Y. M.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z. B.; Xue, J. M. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale 2019, 11, 19723–19728.

[28]

Zhu, C. Y.; Fang, G. Z.; Zhou, J.; Guo, J. H.; Wang, Z. Q.; Wang, C.; Li, J. Y.; Tang, Y.; Liang, S. Q. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677–9683.

[29]

Tamilselvan, M.; Sreekanth, T. V. M.; Yoo, K.; Kim, J. Binder-free coaxially grown V6O13 nanobelts on carbon cloth as cathodes for highly reversible aqueous zinc ion batteries. Appl. Surface Sci. 2020, 529, 147077.

[30]

Zhang, A. T.; Yue, L. J.; Jia, D. D.; Cui, L.; Wei, D.; Huang, W. G.; Liu, R.; Liu, Y.; Yang, W. R.; Liu, J. Q. Cobalt/nickel ions-assisted synthesis of laminated CuO nanospheres based on Cu(OH)2 nanorod arrays for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 2591–2600.

[31]

Zhang, A. T.; Zong, H. W.; Fu, H. C.; Wang, L. H.; Cao, X. Y.; Zhong, Y. X.; Liu, B. P.; Liu, J. Q. Controllable synthesis of nickel doped hierarchical zinc MOF with tunable morphologies for enhanced supercapability. J. Colloid. Interface Sci. 2022, 618, 375–385.

[32]

He, P. G.; Liu, J. H.; Zhao, X. D.; Ding, Z. P.; Gao, P.; Fan, L. Z. A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. J. Mater. Chem. A 2020, 8, 10370–10376.

[33]

Wang, Z. H.; Liang, P.; Zhang, R. G.; Liu, Z. M.; Li, W. Y.; Pan, Z. G.; Yang, H.; Shen, X. D.; Wang, J. Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries. Appl. Surface Sci. 2021, 562, 150196.

[34]

De Juan-Corpuz, L. M.; Corpuz, R. D.; Somwangthanaroj, A.; Nguyen, M. T.; Yonezawa, T.; Ma, J. M.; Kheawhom, S. Binder-free centimeter-long V2O5 nanofibers on carbon cloth as cathode material for zinc-ion batteries. Energies 2019, 13, 31.

[35]

Li, X. F.; Yang, L. Y.; Mi, H. Y.; Li, H. Z.; Zhang, M.; Abliz, A.; Zhao, F. J.; Wang, S. Y.; Li, H. B. VO2(B)@carbon fiber sheet as a binder-free flexible cathode for aqueous Zn-ion batteries. CrystEngComm 2021, 23, 8650–8659.

[36]

Li, S. T.; Liu, G.; Liu, J.; Lu, Y. K.; Yang, Q.; Yang, L. Y.; Yang, H. R.; Liu, S. L.; Lei, M.; Han, M. Carbon fiber cloth@VO2(B): Excellent binder-free flexible electrodes with ultrahigh mass-loading. J. Mater. Chem. A 2016, 4, 6426–6432.

[37]

Guo, D. L.; Qin, J. W.; Yin, Z. G.; Bai, J. M.; Sun, Y. K.; Cao, M. H. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2018, 45, 136–147.

[38]

Tamilselvan, M.; Sreekanth, T. V. M.; Yoo, K.; Kim, J. Ultrathin ammonium vanadate nanoflakes on carbon fiber—A binder-free high-rate capability cathode for aqueous medium zinc ion storage. J. Alloys Compd. 2021, 876, 160130.

[39]

Wang, N.; Fei, J.; Li, J. Y.; Xu, Z. W.; Zheng, X. H.; Huang, J. F.; Wang, Y. Regulating the chemical bond of carbon cloth for growing uniform Sb2O5 as high-performance sodium ion batteries anode. J. Electroanal. Chem. 2021, 892, 115275.

[40]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[41]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[42]

Wang, J. J.; Wang, J. G.; Qin, X. P.; Wang, Y. A.; You, Z. Y.; Liu, H. Y.; Shao, M. H. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance. ACS Appl. Mater. Interfaces 2020, 12, 34949–34958.

[43]

Cai, Y.; Chua, R.; Kou, Z. K.; Ren, H.; Yuan, D.; Huang, S. Z.; Kumar, S.; Verma, V.; Amonpattaratkit, P.; Srinivasan, M. Boosting Zn-ion storage performance of bronze-type VO2 via Ni-mediated electronic structure engineering. ACS Appl. Mater. Interfaces 2020, 12, 36110–36118.

[44]

Li, Z. Q.; Ren, Y. K.; Mo, L.; Liu, C. F.; Hsu, K.; Ding, Y. C.; Zhang, X. X.; Li, X. L.; Hu, L. H.; Ji, D. H. et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020, 14, 5581–5589.

[45]

Brito, W. H.; Aguiar, M. C. O.; Haule, K.; Kotliar, G. Metal−insulator transition in VO2: A DFT + DMFT perspective. Phys. Rev. Lett. 2016, 117, 056402.

[46]

Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

[47]

Huang, H. H.; Zhao, G. Y.; Sun, X.; Yu, X. B.; Liu, C.; Shen, X. J.; Wang, M.; Lyu, P. B.; Zhang, N. Q. Built-in electric field enhanced ionic transport kinetics in the T-Nb2O5@MoO2 heterostructure. J. Mater. Chem. A 2021, 9, 22854–22860.

[48]

Zhang, B. H.; Liu, Y.; Wu, X. W.; Yang, Y. Q.; Chang, Z.; Wen, Z. B.; Wu, Y. P. An aqueous rechargeable battery based on zinc anode and Na095MnO2. Chem. Commun. 2014, 50, 1209–1211.

[49]

Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.

[50]
QinH. G.ChenL. L.WangL. M.ChenX.YangZ. H. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteriesElectrochim. Acta201930630731610.1016/j.electacta.2019.03.087

Qin, H. G.; Chen, L. L.; Wang, L. M.; Chen, X.; Yang, Z. H. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 2019, 306, 307–316.

[51]

Liu, Y.; Hu, P.; Liu, H.; Wu, X.; Zhi, C. Tetragonal VO2 hollow nanospheres as robust cathode material for aqueous zinc ion batteries. Mater. Today Energy 2020, 17, 100431.

[52]

Wei, T. Y.; Li, Q.; Yang, G. Z.; Wang, C. X. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 2018, 6, 8006–8012.

[53]

Liu, S. C.; He, J. F.; Liu, D. S.; Ye, M. H.; Zhang, Y. F.; Qin, Y. L.; Li, C. C. Suppressing vanadium dissolution by modulating aqueous electrolyte structure for ultralong lifespan zinc ion batteries at low current density. Energy Storage Mater. 2022, 49, 93–101.

[54]

Li, Z. L.; Ganapathy, S.; Xu, Y. L.; Zhou, Z.; Sarilar, M.; Wagemaker, M. Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 2019, 9, 1900237.

[55]

Shi, Z. L.; Ru, Q.; Pan, Z. K.; Zheng, M. H.; Ling, F. C. C.;Wei, L. Flexible free-standing VO2/MXene conductive films as cathodes for quasi-solid-state zinc-ion batteries. ChemElectroChem 2021, 8, 1091–1097.

[56]

Shuai, B. B.; Zhou, C.; Pi, Y. Q.; Xu, X. Atomic layer-deposited ZnO layer on hydrated vanadium dioxide cathodes against vanadium dissolution for stable zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 6139–6145.

[57]

Huang, S. M.; He, S. G.; Qin, H. Q.; Hou, X. H. Oxygen defect hydrated vanadium dioxide/graphene as a superior cathode for aqueous Zn batteries. ACS Appl. Mater. Interfaces 2021, 13, 44379–44388.

Nano Research
Pages 503-512
Cite this article:
Luo P, Zhang W, Cai W, et al. Accelerated ion/electron transport kinetics and increased active sites via local internal electric fields in heterostructured VO2–carbon cloth for enhanced zinc-ion storage. Nano Research, 2023, 16(1): 503-512. https://doi.org/10.1007/s12274-022-4753-0
Topics:

1019

Views

25

Crossref

24

Web of Science

26

Scopus

2

CSCD

Altmetrics

Received: 21 April 2022
Revised: 27 June 2022
Accepted: 08 July 2022
Published: 28 July 2022
© Tsinghua University Press 2022
Return