Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Surface spinel reconstruction to suppress detrimental phase transition for stable LiNi0.8Co0.1Mn0.1O2 cathodes

Qingmeng Gan1,2Ning Qin1,3Zhiqiang Li1Shuai Gu1,3Kemeng Liao1Kaili Zhang3Li Lu2Zhenghe Xu1Zhouguang Lu1()
Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen 518055, China
Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong 999077, China
Show Author Information

Graphical Abstract

View original image Download original image
Facile plasma treating has been employed to produce oxygen vacancies that will readily transform into a homogeneous spinel layer (~ 6 nm) on the LiNi0.8Co0.1Mn0.1O2 (NCM811) surface after the initial lithiation/delithiation procedure. The diffusion of Li ions remains fast and detrimental phase transition from H2 to H3 is suppressed by the spinel layer.

Abstract

Nickel-rich layered oxides are attractive cathode for lithium-ion batteries (LIBs) because of the high energy density and low cost. The critical problem is capacity fading caused by the highly reactive metastable phases under voltages of higher than 4.15 V. Herein, we find that facile Ar/H2 plasma treating could produce oxygen vacancies that will readily transform into homogeneous spinel layer (~ 6 nm) on the LiNi0.8Co0.1Mn0.1O2 (NCM811) surface after a few cycles of lithiation/delithiation procedure. Owing to the structural matching between spinel and layered structure, the diffusion of Li ions could remain fast upon cycling. Besides, the spinel layer is electrochemically inert, which guarantees surface stabilization and inhibits the detrimental phase transition from H2 to H3 at high voltages. Under the protection of the homogeneous spinel layer, the NCM811 electrode shows superior capacity retention of 91.2% after 200 cycles at the current density of 100 mA·g−1. This work proposes a novel strategy of surface reconstruction to stabilize nickel-rich layered oxide materials for LIBs.

Electronic Supplementary Material

Download File(s)
12274_2022_4754_MOESM1_ESM.pdf (851.3 KB)

References

[1]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[2]

Xie, H. Y.; Hao, Z. M.; Xie, S.; Ye, Y. D.; Zhang, W.; Sun, Z. W.; Jin, S.; Ji, H. X.; Chen, J. Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Res. 2022, 15, 5143–5152.

[3]

Zhao, D.; Qin, J. W.; Zheng, L. R.; Guo, D. L.; Wang, J.; Cao, M. H. Covalent interfacial coupling of vanadium nitride with nitrogen-rich carbon textile boosting its lithium storage performance as binder-free anode. Nano Res. 2021, 14, 4336–4346.

[4]

Zhu, J. H.; Chen, Z.; Jia, L.; Lu, Y. Q.; Wei, X. R.; Wang, X. N.; Wu, W. D.; Han, N.; Li, Y. G.; Wu, Z. X. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Res. 2019, 12, 2250–2258.

[5]

Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

[6]

Han, X.; Zhou, W. J.; Chen, M. F.; Luo, L. S.; Gu, L. H.; Zhang, Q. B.; Chen, J. Z.; Liu, B.; Chen, S. Y.; Zhang, W. Q. Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery. Nano Res. 2022, 15, 6156–6167.

[7]

Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni06Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

[8]

Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.

[9]

Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1−xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater. 2018, 30, 1155–1163.

[10]

Gan, Q. M.; Qin, N.; Zhu, Y. H.; Huang, Z. X.; Zhang, F. C.; Gu, S.; Xie, J. W.; Zhang, K. L.; Lu, L.; Lu, Z. G. Polyvinylpyrrolidone-induced uniform surface-conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 12594–12604.

[11]

Lin, Q. Y.; Guan, W. H.; Meng, J.; Huang, W.; Wei, X.; Zeng, Y. W.; Li, J. X.; Zhang, Z. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy 2018, 54, 313–321.

[12]

Zou, L. F.; Zhao, W. G.; Liu, Z. Y.; Jia, H. P.; Zheng, J. M.; Wang, G. F.; Yang, Y.; Zhang, J. G.; Wang, C. M. Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials. ACS Energy Lett. 2018, 3, 2433–2440.

[13]

Chang, B.; Kim, J.; Cho, Y.; Hwang, I.; Jung, M. S.; Char, K.; Lee, K. T.; Kim, K. J.; Choi, J. W. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2001069.

[14]

Wu, Y. Q.; Ming, H.; Li, M. L.; Zhang, J. L.; Wahyudi, W.; Xie, L. Q.; He, X. M.; Wang, J.; Wu, Y. P.; Ming, J. New organic complex for lithium layered oxide modification: Ultrathin coating, high-voltage, and safety performances. ACS Energy Lett. 2019, 4, 656–665.

[15]

Yoon, W. S.; Nam, K. W.; Jang, D.; Chung, K. Y.; Hanson, J.; Chen, J. M.; Yang, X. Q. Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. J. Power Sources 2012, 217, 128–134.

[16]

Zhao, S. Y.; Zhu, Y. T.; Qian, Y. C.; Wang, N. N.; Zhao, M.; Yao, J. L.; Xu, Y. H. Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion battery. Mater. Lett. 2020, 265, 127418.

[17]

Myung, S. T.; Izumi, K.; Komaba, S.; Sun, Y. K.; Yashiro, H.; Kumagai, N. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem. Mater. 2005, 17, 3695–3704.

[18]

Sun, H.; Li, H.; Chang, X. Y.; Miao, S. S.; Yuan, X. L.; Zhang, W. X.; Jia, M. J. Nitrogen-doped carbon supported ZnO as highly stable heterogeneous catalysts for transesterification synthesis of ethyl methyl carbonate. J. Colloid Interface Sci. 2021, 581, 126–134.

[19]

Zhang, H. L.; Xu, J. Q.; Zhang, J. J. Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries. Front. Mater. 2019, 6, 309.

[20]

Chen, C.; Tao, T.; Qi, W.; Zeng, H.; Wu, Y.; Liang, B.; Yao, Y. B.; Lu, S. G.; Chen, Y. High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes. J. Alloys Compd. 2017, 709, 708–716.

[21]

Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.

[22]

Piao, J. Y.; Gu, L.; Wei, Z. X.; Ma, J. M.; Wu, J. P.; Yang, W. L.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S. et al. Phase control on surface for the stabilization of high energy cathode materials of lithium ion batteries. J. Am. Chem. Soc. 2019, 141, 4900–4907.

[23]

Gan, Q. M.; Qin, N.; Wang, Z. Y.; Li, Z. Q.; Zhu, Y. H.; Li, Y. Z.; Gu, S.; Yuan, H. M.; Luo, W.; Lu, L. et al. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes. ACS Appl. Energy Mater. 2020, 3, 7445–7455.

[24]

Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S.; Ryou, J. H.; Yoon, W. S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788.

[25]

Yoon, C. S.; Choi, M. J.; Jun, D. W.; Zhang, Q.; Kaghazchi, P.; Kim, K. H.; Sun, Y. K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chem. Mater. 2018, 30, 1808–1814.

[26]

Hu, G. R.; Zhang, M. F.; Wu, L. L.; Peng, Z. D.; Du, K.; Cao, Y. B. High-conductive AZO nanoparticles decorated Ni-rich cathode material with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 33546–33552.

[27]

Liu, W.; Li, X. F.; Xiong, D. B.; Hao, Y. C.; Li, J. W.; Kou, H. R.; Yan, B.; Li, D. J.; Lu, S. G.; Koo, A. et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 2018, 44, 111–120.

[28]

He, H. N.; Huang, D.; Pang, W. K.; Sun, D.; Wang, Q.; Tang, Y. G.; Ji, X. B.; Guo, Z. P.; Wang, H. Y. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 2018, 30, 1801013.

[29]

Li, G. W.; Gopalakrishna, T. Y.; Phan, H.; Herng, T. S.; Ding, J.; Wu, J. S. From open-shell singlet diradicaloid to closed-shell global antiaromatic macrocycles. Angew. Chem., Int. Ed. 2018, 57, 7166–7170.

[30]

Gu, S.; Wu, S. F.; Cao, L. J.; Li, M. C.; Qin, N.; Zhu, J.; Wang, Z. Q.; Li, Y. Z.; Li, Z. Q.; Chen, J. J. et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J. Am. Chem. Soc. 2019, 141, 9623–9628.

[31]

Huang, H.; Li, Z. Q.; Gu, S.; Bian, J. C.; Li, Y. Z.; Chen, J. J.; Liao, K. M.; Gan, Q. M.; Wang, Y. F.; Wu, S. S. et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv. Energy Mater. 2021, 11, 2101864.

[32]

Assat, G.; Iadecola, A.; Foix, D.; Dedryvère, R.; Tarascon, J. M. Direct quantification of anionic redox over long cycling of Li-rich NMC via hard X-ray photoemission spectroscopy. ACS Energy Lett. 2018, 3, 2721–2728.

[33]

Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459.

[34]

You, Y.; Celio, H.; Li, J. Y.; Dolocan, A.; Manthiram, A. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 6480–6485.

[35]

Huang, W.; Li, W. J.; Wang, L.; Zhu, H.; Gao, M.; Zhao, H.; Zhao, J. L.; Shen, X. L.; Wang, X. D.; Wang, Z. et al. Structure and charge regulation strategy enabling superior cyclability for Ni-rich layered cathode materials. Small 2021, 17, 2104282.

[36]

Nam, K. W.; Bak, S. M.; Hu, E. Y.; Yu, X. Q.; Zhou, Y.; Wang, X. J.; Wu, L. J.; Zhu, Y. M.; Chung, K. Y.; Yang, X. Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047–1063.

[37]

Yoon, C. S.; Ryu, H. H.; Park, G. T.; Kim, J. H.; Kim, K. H.; Sun, Y. K. Extracting maximum capacity from Ni-rich Li[Ni0.95Co0.025Mn0.025]O2 cathodes for high-energy-density lithium-ion batteries. J. Mater. Chem. A 2018, 6, 4126–4132.

[38]

Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett. 2019, 4, 508–516.

[39]

Chen, D. C.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. L. Operando investigation into dynamic evolution of cathode-electrolyte interfaces in a Li-ion battery. Nano Lett. 2019, 19, 2037–2043.

[40]

Zhang, N.; Long, X. H.; Wang, Z.; Yu, P. F.; Han, F. D.; Fu, J. M.; Ren, G. X.; Wu, Y. R.; Zheng, S.; Huang, W. C. et al. Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl. Energy Mater. 2018, 1, 5968–5976.

[41]

Liu, S.; Liu, Z. P.; Shen, X.; Li, W. H.; Gao, Y. R.; Banis, M. N.; Li, M. S.; Chen, K.; Zhu, L.; Yu, R. C. et al. Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 2018, 8, 1802105.

[42]

Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751.

Nano Research
Pages 513-520
Cite this article:
Gan Q, Qin N, Li Z, et al. Surface spinel reconstruction to suppress detrimental phase transition for stable LiNi0.8Co0.1Mn0.1O2 cathodes. Nano Research, 2023, 16(1): 513-520. https://doi.org/10.1007/s12274-022-4754-z
Topics:
Metrics & Citations  
Article History
Copyright
Return