AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly stable, stretchable, and transparent electrodes based on dual-headed Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor

Yangyang WangJingyi KongRuifang XueJianping WangMin GongXiang LinLiang ZhangDongrui Wang( )
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Show Author Information

Graphical Abstract

Capillary-force induces the welding of matchstick-like core-sheath Ag@Au nanowires, generating a stretchable and transparent electrode that shows an optical transmittance of 78.7% and a haze of 13.0% at a sheet resistance of 13.5 Ω·sq.−1 with a tensile strain endurance of up to 240%, and superior oxidation resistance, hightemperature resistance, and chemical/electrochemical stability, for wearable non-enzymatic glucose biosensor.

Abstract

Stretchable and transparent electrodes (STEs) based on silver nanowires (AgNWs) have garnered considerable attention due to their unique optoelectronic features. However, the low oxidation resistance of AgNWs severely limits the reliability and durability of devices based on such STEs. The present work reports a type of core-sheath silver@gold nanowires (Ag@Au NWs) with a morphology resembling dual-headed matchsticks and an average Au sheath thickness of 2.5 nm. By starting with such Ag@Au NWs, STEs with an optical transmittance of 78.7%, a haze of 13.0%, a sheet resistance of 13.5 Ω·sq.−1, and a maximum tensile strain of 240% can be formed with the aid of capillary-force-induced welding. The resultant STEs exhibit exceptional oxidation resistance, high-temperature resistance, and chemical/electrochemical stability owing to the conformal and dense Au sheath. Furthermore, non-enzymatic glucose biosensors are fabricated employing the Ag@Au NW STEs. The electrocatalytic oxidation currents are proportional to glucose concentrations with a high sensitivity of 967 μA·mM−1·cm−2 and a detection limit of 125 μM over a detection range of 0.6 to 16 mM. Additionally, the biosensors demonstrate an appealing robustness and anti-interference characteristics, high repeatability, and great stability that make them adequate for practical use.

Electronic Supplementary Material

Download File(s)
12274_2022_4757_MOESM1_ESM.pdf (5.2 MB)

References

[1]

Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.

[2]

Yu, H.; Tian, Y.; Dirican, M.; Fang, D. J.; Yan, C. Y.; Xie, J. Y.; Jia, D. M.; Liu, Y.; Li, C. X.; Cui, M. et al. Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohyd. Polym. 2021, 273, 118539.

[3]

Ho, M. D.; Ling, Y. Z.; Yap, L. W.; Wang, Y.; Dong, D. S.; Zhao, Y. M.; Cheng, W. L. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 2017, 27, 1700845.

[4]

Kim, T.; Park, C.; Samuel, E. P.; An, S.; Aldalbahi, A.; Alotaibi, F.; Yarin, A. L.; Yoon, S. S. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 10013–10025.

[5]

Zhou, Q.; Ji, B.; Hu, B.; Li, S. B.; Xu, Y.; Gao, Y. B.; Wen, W. J.; Zhou, J.; Zhou, B. P. Tilted magnetic micropillars enabled dual-mode sensor for tactile/touchless perceptions. Nano Energy 2020, 78, 105382.

[6]

Choi, S. E.; Park, D.; Hwang, H.; Seo, M.; Lee, D.; Jeong, U.; Kim, J. W. 2D colloidal array of glucose-conjugative conductive microparticles for a pressure-mediated chemiresistive sensor platform. Adv. Funct. Mater. 2020, 30, 2000431.

[7]

Cho, S.; Kang, D. H.; Lee, H.; Kim, M. P.; Kang, S.; Shanker, R.; Ko, H. Highly stretchable sound-in-display electronics based on strain-insensitive metallic nanonetworks. Adv. Sci. 2021, 8, 2001647.

[8]

Wang, J. X.; Yan, C. Y.; Chee, K. J.; Lee, P. S. Highly stretchable and self-deformable alternating current electroluminescent devices. Adv. Mater. 2015, 27, 2876–2882.

[9]

Ricciardulli, A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010.

[10]

Jung, J.; Cho, H.; Yuksel, R.; Kim, D.; Lee, H.; Kwon, J.; Lee, P.; Yeo, J.; Hong, S.; Unalan, H. E. et al. Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale 2019, 11, 20356–20378.

[11]

Jin, Y. X.; Sun, Y.; Wang, K. Q.; Chen, Y. N.; Liang, Z. Q.; Xu, Y. X.; Xiao, F. Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 2018, 11, 1998–2011.

[12]

Chaturvedi, N.; Gasparini, N.; Corzo, D.; Bertrandie, J.; Wehbe, N.; Troughton, J.; Baran, D. All slot-die coated non-fullerene organic solar cells with PCE 11%. Adv. Funct. Mater. 2021, 31, 2009996.

[13]

Zhu, H. F.; Wang, X. W.; Liang, J.; Lv, H. L.; Tong, H. Y.; Ma, L. B.; Hu, Y.; Zhu, G. Y.; Zhang, T.; Tie, Z. X. et al. Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv. Funct. Mater. 2017, 27, 1606604.

[14]

Liu, Z. Y.; Parvez, K.; Li, R. J.; Dong, R. H.; Feng, X. L.; Müllen, K. Transparent conductive electrodes from graphene/PEDOT: PSS hybrid inks for ultrathin organic photodetectors. Adv. Mater. 2015, 27, 669–675.

[15]

Hu, Y.; Mao, L. Y.; Yuan, X.; Lu, J. Y.; Chen, R. P.; Chen, T.; Zhang, W. J.; Xue, X. L.; Yan, W.; Shokouhimehr, M. et al. Controllable growth and flexible optoelectronic devices of regularly-assembled Bi2S3 semiconductor nanowire bifurcated junctions and crosslinked networks. Nano Res. 2020, 13, 2226–2232.

[16]

Yin, Z. X.; Song, S. K.; Cho, S.; You, D. J.; Yoo, J.; Chang, S. T.; Kim, Y. S. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Res. 2017, 10, 3077–3091.

[17]

Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9, 2162–2173.

[18]

Kim, C. L.; Jung, C. W.; Oh, Y. J.; Kim, D. E. A highly flexible transparent conductive electrode based on nanomaterials. NPG Asia Mater. 2017, 9, e438.

[19]

Zhu, Y. W.; Deng, Y. J.; Yi, P. Y.; Peng, L. F.; Lai, X. M.; Lin, Z. Q. Flexible transparent electrodes based on silver nanowires: Material synthesis, fabrication, performance, and applications. Adv. Mater. Technol. 2019, 4, 1900413.

[20]

Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 2019, 48, 1566–1595.

[21]

Lin, S.; Bai, X. P.; Wang, H. Y.; Wang, H. L.; Song, J. N.; Huang, K.; Wang, C.; Wang, N.; Li, B.; Lei, M. et al. Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows. Adv. Mater. 2017, 29, 1703238.

[22]

Zhang, S. M.; Liu, K.; Liu, Z. J.; Liu, M. X.; Zhang, Z. X.; Qiao, Z.; Ming, L.; Gao, C. B. Highly strained Au-Ag-Pd alloy nanowires for boosted electrooxidation of biomass-derived alcohols. Nano Lett. 2021, 21, 1074–1082.

[23]

Gong, S.; Cheng, W. L. One-dimensional nanomaterials for soft electronics. Adv. Electron. Mater. 2017, 3, 1600314.

[24]

Huo, D.; Kim, M. J.; Lyu, Z. H.; Shi, Y. F.; Wiley, B. J.; Xia, Y. N. One-dimensional metal nanostructures: From colloidal syntheses to applications. Chem. Rev. 2019, 119, 8972–9073.

[25]

Wang, D. R.; Zhang, Y. K.; Lu, X.; Ma, Z. J.; Xie, C.; Zheng, Z. J. Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 2018, 47, 4611–4641.

[26]

Kwon, J.; Suh, Y. D.; Lee, J.; Lee, P.; Han, S.; Hong, S.; Yeo, J.; Lee, H.; Ko, S. H. Recent progress in silver nanowire based flexible/wearable optoelectronics. J. Mater. Chem. C 2018, 6, 7445–7461.

[27]

Yang, M. X.; Hood, Z. D.; Yang, X.; Chi, M. F.; Xia, Y. N. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability against oxidation. Chem. Commun. 2017, 53, 1965–1968.

[28]

Hao, T. T.; Wang, S.; Xu, H. B.; Zhang, X.; Xue, J. Y.; Liu, S. K.; Song, Y.; Li, Y.; Zhao, J. P. Highly robust, transparent, and conductive films based on AgNW-C nanowires for flexible smart windows. Appl. Surf. Sci. 2021, 559, 149846.

[29]

Moon, H.; Lee, H.; Kwon, J.; Suh, Y. D.; Kim, D. K.; Ha, I.; Yeo, J.; Hong, S.; Ko, S. H. Ag/Au/Polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 2017, 7, 41981.

[30]

Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

[31]

Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

[32]

Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734.

[33]

Liu, H. P.; Liu, T. Z.; Zhang, L.; Han, L.; Gao, C. B.; Yin, Y. D. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv. Funct. Mater. 2015, 25, 5435–5443.

[34]

Liu, J. Z.; Wang, Y. T.; Jiang, H.; Jiang, H. B.; Zhou, X. D.; Li, Y. H.; Li, C. Z. Ag@Au core-shell nanowires for nearly 100% CO2-to-CO electroreduction. Chem. Asian J. 2020, 15, 425–431.

[35]

Yang, M. X.; Gilroy, K. D.; Xia, Y. N. A general approach to the synthesis of M@Au/Ag (M = Au, Pd, and Pt) nanorattles with ultrathin shells less than 2.5 nm thick. Part. Part. Syst. Charact. 2017, 34, 1600279.

[36]

Au, L.; Lu, X. M.; Xia, Y. N. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4. Adv. Mater. 2008, 20, 2517–2522.

[37]

Yin, H. J.; Chen, Z. Y.; Zhao, Y. M.; Lv, M. Y.; Shi, C. A.; Wu, Z. L.; Zhang, X.; Liu, L.; Wang, M. L.; Xu, H. J. Ag@Au core-shell dendrites: A stable, reusable and sensitive surface enhanced Raman scattering substrate. Sci. Rep. 2015, 5, 14502.

[38]

Liu, S. P.; Chen, N.; Li, L. X.; Pang, F. F.; Chen, Z. Y.; Wang, T. Y. Fabrication of Ag/Au core-shell nanowire as a SERS substrate. Opt. Mater. 2013, 35, 690–692.

[39]

Shim, J. H.; Yang, J.; Kim, S. J.; Lee, C.; Lee, Y. One dimensional Ag/Au/AgCl nanocomposites stemmed from Ag nanowires for electrocatalysis of oxygen reduction. J. Mater. Chem. 2012, 22, 15285–15290.

[40]

Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

[41]

Zhu, Y. Z.; Kim, S.; Ma, X. Z.; Byrley, P.; Yu, N.; Liu, Q. S.; Sun, X. M.; Xu, D.; Peng, S. S.; Hartel, M. C. et al. Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices. Nano Res. 2021, 14, 4294–4303.

[42]

Lee, H.; Hong, S.; Lee, J.; Suh, Y. D.; Kwon, J.; Moon, H.; Kim, H.; Yeo, J.; Ko, S. H. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 2016, 8, 15449–15458.

[43]

Huang, S.; Liu, Y. N.; Jafari, M.; Siaj, M.; Wang, H. N.; Xiao, S. Y.; Ma, D. L. Highly stable Ag-Au core-shell nanowire network for ITO-free flexible organic electrochromic device. Adv. Funct. Mater. 2021, 31, 2010022.

[44]

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

[45]

Ding, Y. N.; Cui, Y. C.; Liu, X. H.; Liu, G. X.; Shan, F. K. Welded silver nanowire networks as high-performance transparent conductive electrodes: Welding techniques and device applications. Appl. Mater. Today 2020, 20, 100634.

[46]

Jing, M. X.; Han, C.; Li, M.; Shen, X. Q. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res. Lett. 2014, 9, 588.

[47]

Lee, J.; Lee, I.; Kim, T. S.; Lee, J. Y. Efficient welding of silver nanowire networks without post-processing. Small 2013, 9, 2887–2894.

[48]

Kang, H.; Zhao, C. L.; Huang, J. R.; Ho, D. H.; Megra, Y. T.; Suk, J. W.; Sun, J.; Wang, Z. L.; Sun, Q. J.; Cho, J. H. Fingerprint-inspired conducting hierarchical wrinkles for energy-harvesting E-skin. Adv. Funct. Mater. 2019, 29, 1903580.

[49]

Liu, G. S.; Wang, T.; Wang, Y. X.; Zheng, H. J.; Chen, Y. S.; Zeng, Z. J.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res. 2022, 15, 2582–2591.

[50]

Kang, H.; Kim, Y.; Cheon, S.; Yi, G. R.; Cho, J. H. Halide welding for silver nanowire network electrode. ACS Appl. Mater. Interfaces 2017, 9, 30779–30785.

[51]

Lian, L.; Xi, X.; Dong, D.; He, G. F. Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode. Org. Electron. 2018, 60, 9–15.

[52]

Liang, X. W.; Zhao, T.; Zhu, P. L.; Hu, Y. G.; Sun, R.; Wong, C. P. Room-temperature nanowelding of a silver nanowire network triggered by hydrogen chloride vapor for flexible transparent conductive films. ACS Appl. Mater. Interfaces 2017, 9, 40857–40867.

[53]

Lee, H. J.; Oh, S.; Cho, K. Y.; Jeong, W. L.; Lee, D. S.; Park, S. J. Spontaneous and selective nanowelding of silver nanowires by electrochemical ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 14124–14131.

[54]

Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 2017, 17, 1090–1096.

[55]

Xu, F.; Xu, W.; Mao, B. X.; Shen, W. F.; Yu, Y.; Tan, R. Q.; Song, W. J. Preparation and cold welding of silver nanowire based transparent electrodes with optical transmittances >90% and sheet resistances <10 ohm·sq−1. J. Colloid Interface Sci. 2018, 512, 208–218.

[56]

Wang, Y. Y.; Zhang, L.; Wang, D. R. Ultrastretchable hybrid electrodes of silver nanowires and multiwalled carbon nanotubes realized by capillary-force-induced welding. Adv. Mater. Technol. 2019, 4, 1900721.

[57]

Chen, J. Z.; Ahn, H.; Yen, S. C.; Tsai, Y. J. Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 20994–20999.

[58]

Guan, P. Y.; Zhu, R. B.; Zhu, Y. Z.; Chen, F. D.; Wan, T.; Xu, Z. M.; Joshi, R.; Han, Z. J.; Hu, L.; Wu, T. et al. Performance degradation and mitigation strategies of silver nanowire networks: A review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 435–459.

[59]

Wang, X.; Zhang, Z. Y.; Hartland, G. V. Electronic dephasing in bimetallic gold-silver nanoparticles examined by single particle spectroscopy. J. Phys. Chem. B 2005, 109, 20324–20330.

[60]

Mutiso, R. M.; Sherrott, M. C.; Rathmell, A. R.; Wiley, B. J.; Winey, K. I. Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS Nano 2013, 7, 7654–7663.

[61]

Khanarian, G.; Joo, J.; Liu, X. Q.; Eastman, P.; Werner, D.; O'Connell, K.; Trefonas, P. The optical and electrical properties of silver nanowire mesh films. J. Appl. Phys. 2013, 114, 024302.

[62]

Yang, L.; Hu, J. H.; Bai, K. Z. Capillary and van der Waals force between microparticles with different sizes in humid air. J. Adhes. Sci. Technol. 2016, 30, 566–578.

[63]

Xiao, T.; Huang, J. S.; Wang, D. W.; Meng, T.; Yang, X. R. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020, 206, 120210.

[64]

Sehit, E.; Altintas, Z. Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016–2020). Biosens. Bioelectron. 2020, 159, 112165.

[65]

Tian, T. L.; Dong, J. P.; Xu, J. Q. Direct electrodeposition of highly ordered gold nanotube arrays for use in non-enzymatic amperometric sensing of glucose. Microchim. Acta 2016, 183, 1925–1932.

[66]

Hebié, S.; Napporn, T. W.; Morais, C.; Kokoh, K. B. Size-dependent electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction. ChemPhysChem 2016, 17, 1454–1462.

[67]

Zhao, Y.; Chu, J.; Li, S. H.; Li, W. W.; Liu, G.; Tian, Y. C.; Yu, H. Q. Non-enzymatic electrochemical detection of glucose with a gold nanowire array electrode. Electroanalysis 2014, 26, 656–663.

[68]

Tran, V. K.; Ko, E.; Geng, Y. F.; Kim, M. K.; Jin, G. H.; Son, S. E.; Hur, W.; Seong, G. H. Micro-patterning of single-walled carbon nanotubes and its surface modification with gold nanoparticles for electrochemical paper-based non-enzymatic glucose sensor. J. Electroanal. Chem. 2018, 826, 29–37.

[69]

Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568.

[70]

Kong, F. Y.; Gu, S. X.; Li, W. W.; Chen, T. T.; Xu, Q.; Wang, W. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens. Bioelectron. 2014, 56, 77–82.

[71]
LiuY. X.DingY.ZhangY. C.LeiY. Pt–Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environmentSensor. Actuator. B: Chem.2012171–17295496110.1016/j.snb.2012.06.009

Liu, Y. X.; Ding, Y.; Zhang, Y. C.; Lei, Y. Pt–Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment. Sensor. Actuator. B: Chem. 2012, 171–172, 954–961.

[72]

El-Ads, E. H.; Galal, A.; Atta, N. F. Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode-towards a novel non-enzymatic glucose sensor. J. Electroanal. Chem. 2015, 749, 42–52.

[73]

Yang, X. J.; Bai, J.; Wang, Y. H.; Jiang, X. E.; He, X. Y. Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst 2012, 137, 4362–4367.

[74]

Xu, J. Q.; Qiao, X. J.; Arsalan, M.; Cheng, N.; Cao, W.; Yue, T. L.; Sheng, Q. L.; Zheng, J. B. Preparation of one dimensional silver nanowire/nickel-cobalt layered double hydroxide and its electrocatalysis of glucose. J. Electroanal. Chem. 2018, 823, 315–321.

Nano Research
Pages 1558-1567
Cite this article:
Wang Y, Kong J, Xue R, et al. Highly stable, stretchable, and transparent electrodes based on dual-headed Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor. Nano Research, 2023, 16(1): 1558-1567. https://doi.org/10.1007/s12274-022-4757-9
Topics:

1215

Views

10

Crossref

9

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 03 March 2022
Revised: 07 July 2022
Accepted: 11 July 2022
Published: 03 August 2022
© Tsinghua University Press 2022
Return