AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics

Xianlu Lei1,2Xinxin Xu1,2Liqiang Liu1,2Liguang Xu1,2Li Wang1,2Hua Kuang1,2( )Chuanlai Xu1,2( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Show Author Information

Graphical Abstract

A gold nanoparticle (GNPs)-based multiplex strip was developed for simultaneous determination of 83 antibiotic residues in aquaculture fish.

Abstract

Antibiotic residues, generated by the irrational use of drugs and environmental pollution, have always been a great challenge to aquaculture safety. Therefore, a quick, convenient, and performance-excellent way to detect antibiotic residues in aquaculture fish is urgently required. In this study, a multiplex immunochromatographic strip biosensor based on gold nanoparticles was developed for the simultaneous detection of five classes of antibiotic residues (24 β-lactam antibiotics, 26 sulfonamides, five tetracyclines, 24 quinolones, and four amphenicols) in aquaculture fish within 10 min. The detection ranges of five representative antibiotics, penicillin G, sulfamethazine, tetracycline, enrofloxacin, and chloramphenicol, were 2.33–38.4, 0.688–17.1, 1.4–48.1, 1.45–32.9, and 0.537–9.06 µg/kg, respectively. The accuracy and stability of these measurements were demonstrated by analyzing spiked fish samples, with recovery rates of 87.5%–115.2% and a coefficient of variation < 9.5%. The cross-reaction rates, based on the five representative antibiotics, were 3.77%–202% for β-lactams, 3.95%–137% for sulfonamides, 9.19%–100% for tetracyclines, 4.9%–145% for quinolones, and 3.2%–100% for amphenicols. The excellent testing performance of the biosensor strip to most of antibiotic residues in aquaculture fish ensures they meet the maximum residue limits required by countries or organizations. Therefore, this multiplex immunochromatographic strip biosensor is potentially applicable to the rapidly on-site determination of antibiotic residues in aquaculture fish.

Electronic Supplementary Material

Download File(s)
12274_2022_4762_MOESM1_ESM.pdf (748 KB)

References

[1]
FAO. The State of World Fisheries and Aquaculture 2016 [Online]. 2016; pp 204. http://www.fao.org/3/a-i5555e.pdf (accessed May 30, 2022).
[2]

Guidi, L. R.; Santos, F. A.; Ribeiro, A. C. S. R.; Fernandes, C.; Silva, L. H. M.; Gloria, M. B. A. A simple, fast and sensitive screening LC–ESI–MS/MS method for antibiotics in fish. Talanta 2017, 163, 85–93.

[3]
Guidi, L. R.; da Silva, L. H. M.; Fernandes, C.; Engeseth, N. J.; Gloria, M. B. A. LC–MS/MS determination of chloramphenicol in food of animal origin in Brazil. Sci. Chromatogr. 2015, 7, 287–295.
[4]

Blasco, C.; Picó, Y.; Torres, C. M. Progress in analysis of residual antibacterials in food. TrAC Trends Analyt. Chem. 2007, 26, 895–913.

[5]

Zhao, Y. L.; Chen, Q.; Lv, J.; Xu, M. M.; Zhang, X.; Li, J. R. Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. Nano Res. 2022, 15, 6430–6437.

[6]

Jakšić, S. M.; Ratajac, R. D.; Prica, N. B.; Apić, J. B.; Ljubojević, D. B.; Žekić Stošić, M. Z.; Živkov Baloš, M. M. Methods of determination of antibiotic residues in honey. J. Anal. Chem. 2018, 73, 317–324.

[7]

Wang, Q.; Zhao, W. M. Optical methods of antibiotic residues detections: A comprehensive review. Sens. Actuators B Chem. 2018, 269, 238–256.

[8]

Joshi, A.; Kim, K. H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046.

[9]

Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

[10]

Wang, C.; Li, X. M.; Peng, T.; Wang, Z. H.; Wen, K.; Jiang, H. Y. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control 2017, 77, 1–7.

[11]

Majdinasab, M.; Mishra, R. K.; Tang, X. Q.; Marty, J. L. Detection of antibiotics in food: New achievements in the development of biosensors. Trends Analyt. Chem. 2020, 127, 115883.

[12]

Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466.

[13]

Santos, L.; Ramos, F. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends Food Sci. Technol. 2016, 52, 16–30.

[14]
Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Health Commission, State Administration for Market Regulation. GB31650-2019 National food safety standard-maximum residue limits for veterinary drugs in foods.
[15]
The European Commission. On Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin [Online]. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf (accessed May 30, 2022).
[16]

Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D. G.; Reviejo, A. J.; Marco, M. P.; Pingarrón, J. M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105.

[17]

Liu, Y. N.; Xiao, Y. Q.; Yu, M.; Cao, Y. Y.; Zhang, Y. L.; Zhe, T. T.; Zhang, H.; Wang, L. Antimonene quantum dots as an emerging fluorescent nanoprobe for the pH-mediated dual-channel detection of tetracyclines. Small 2020, 16, 2003429.

[18]

Zhou, J. L.; Zhao, R. X.; Liu, S. K.; Feng, L. L.; Li, W. T.; He, F.; Gai, S. L.; Yang, P. P. Europium doped silicon quantum dot As a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, 2100812.

[19]

Chen, T.; Cheng, G. Y.; Ahmed, S.; Wang, Y. L.; Wang, X.; Hao, H. H.; Yuan, Z. H. New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017, 175, 435–442.

[20]

Guo, E. H.; Zhao, L. C.; Wu, K.; Huang, W.; Zhao, K.; Li, J. G.; Deng, A. P. Simultaneous detection of three amphenicol antibiotics in shrimp and surface water samples by LC–MS/MS using two-antibodies-immobilized immunoaffinity clean-up technique. Food Agric. Immunol. 2021, 32, 283–297.

[21]

Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. Trends Analyt. Chem. 2010, 29, 1038–1049.

[22]

Chen, Y. Q.; Chen, Q.; Han, M. M.; Liu, J. Y.; Zhao, P.; He, L. D.; Zhang, Y.; Niu, Y. M.; Yang, W. J.; Zhang, L. Y. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens. Bioelectron. 2016, 79, 430–434.

[23]

Pollap, A.; Kochana, J. Electrochemical immunosensors for antibiotic detection. Biosensors 2019, 9, 61.

[24]

Bumbudsanpharoke, N.; Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019, 12, 489–500.

[25]

Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377.

[26]

Ahmed, S.; Ning, J. N.; Peng, D. P.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z. X.; Abu bakr Shabbir, M.; Cheng, G. Y.; Yuan, Z. H. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric. Immunol. 2020, 31, 268–290.

[27]

Wang, Z. F.; Luo, J. Q.; Zhao, Y. F.; Luo, P. J. Development of an enzyme-linked immunosorbent assay for the determination of florfenicol and florfenicol amine in eggs. Food Agric. Immunol. 2020, 31, 881–892.

[28]

Li, H. P.; Wu, J. Y.; Meng, F. P.; Li, A. F. Immunochromatographic assay for the detection of antibiotics in animal-derived foods: A review. Food Control 2021, 130, 108356.

[29]

Taranova, N. A.; Berlina, A. N.; Zherdev, A. V.; Dzantiev, B. B. “Traffic light” immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 2015, 63, 255–261.

[30]

Wang, Z. X.; Zhao, J.; Xu, X. X.; Guo, L. L.; Xu, L. G.; Sun, M. Z.; Hu, S. D.; Kuang, H.; Xu, C. L.; Li, A. K. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143.

[31]

Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

[32]

Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

[33]

Zhou, J. Y.; Nie, W.; Chen, Y. Q.; Yang, C. J.; Gong, L.; Zhang, C.; Chen, Q.; He, L. D.; Feng, X. Y. Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk. Food Chem. 2018, 256, 304–310.

[34]

Jo, M. R.; Son, K. T.; Kwon, J. Y.; Mok, J. S.; Park, H. J.; Kim, H. Y.; Kim, G. D.; Kim, J. H.; Lee, T. S. A lateral flow immunoassay kit for detecting residues of four groups of antibiotics in farmed fish. Korean J. Fish. Aquat. Sci. 2015, 48, 158–167.

[35]

Li, Y.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. A rapid and semi-quantitative gold nanoparticles based strip sensor for polymyxin B sulfate residues. Nanomaterials 2018, 8, 144.

[36]

Chen, Y. N.; Kong, D. Z.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody. Food Anal. Methods 2015, 9, 905–914.

[37]

Chen, Y. N.; Guo, L. L.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. J. Agric. Food Chem. 2017, 65, 8248–8255.

[38]

Peng, J.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro) quinolones by one monoclonal antibody. Nano Res. 2017, 10, 108–120.

[39]

Song, S. S.; Suryoprabowo, S.; Liu, L. Q.; Zheng, Q. K.; Wu, X. L.; Kuang, H. Development of an immunochromatographic strip test for rapid detection of sodium nifurstyrenate in fish. Food Agric. Immunol. 2019, 30, 236–247.

[40]

Guo, L. L.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 2018, 14, 1701782.

[41]

Dubreil, E.; Gautier, S.; Fourmond, M. P.; Bessiral, M.; Gaugain, M.; Verdon, E.; Pessel, D. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC–MS/MS. Food Addit. Contam. 2017, 34, 453–468.

[42]

Cui, X.; Huang, Y. J.; Wang, J. Y.; Zhang, L.; Rong, Y.; Lai, W. H.; Chen, T. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157: H7. RSC Adv. 2015, 5, 45092–45097.

[43]

Kong, D. Z.; Liu, L. Q.; Song, S. S.; Suryoprabowo, S.; Li, A. K.; Kuang, H.; Wang, L. B.; Xu, C. L. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253.

[44]

Pan, Y.; Fei, D. W.; Liu, P. H.; Guo, X. D.; Peng, L. L.; Wang, Y. F.; Xu, N. F.; Wei, X. L. Surface-enhanced Raman scattering-based lateral flow immunoassay for the detection of chloramphenicol antibiotics using Au@ Ag nanoparticles. Food Anal. Methods 2021, 14, 2642–2650.

[45]

Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Miralles, J.; Moreno, A. Fast screening immunoassay of sulfonamides in commercial fish samples. Anal. Bioanal. Chem. 2010, 396, 911–921.

[46]

Sheng, W.; Chang, Q.; Shi, Y. J.; Duan, W. X.; Zhang, Y.; Wang, S. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Microchim. Acta 2018, 185, 404.

[47]

Liu, M. X.; Sang, Y. X.; Zhang, J.; Li, J.; Yu, W. L.; Zhang, F. Y.; Wang, X. H. Development of a broad-specific competitive ELISA for first-generation cephalosporin antibiotics in animal-derived foods samples. Bull. Environ. Contam. Toxicol. 2021, 107, 215–220.

[48]

Pan, M. F.; Wang, X. J.; Wang, J. P.; Lu, Y.; Qian, K.; Wang, S. Stable and sensitive detection of sulfonamide residues in animal-derived foods using a reproducible surface plasmon resonance immunosensor. Food Anal. Methods 2017, 10, 2027–2035.

[49]

Lin, B. X.; Zhang, T. Y.; Xin, X. L.; Wu, D.; Huang, Y.; Liu, Y. W.; Cao, Y. J.; Guo, M. L.; Yu, Y. Europium (III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchim. Acta 2019, 186, 442.

Nano Research
Pages 1259-1268
Cite this article:
Lei X, Xu X, Liu L, et al. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Research, 2023, 16(1): 1259-1268. https://doi.org/10.1007/s12274-022-4762-z
Topics:

1347

Views

26

Crossref

26

Web of Science

26

Scopus

1

CSCD

Altmetrics

Received: 16 May 2022
Revised: 26 June 2022
Accepted: 11 July 2022
Published: 23 August 2022
© Tsinghua University Press 2022
Return