Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Photothermal therapy (PTT) has received a lot of attention as a promising strategy for eliminating tumors quickly. However, the unavoidable inflammatory response during the treatment might result in a high concentration of M2-like tumor-associated macrophages (TAMs), increasing the risk of tumor recurrence and metastasis. To address this problem, gold-based nanocarriers (PGMP-small interfering RNA (siRNA) nanoparticles (NPs)) containing STAT6siRNA, that inhibited M2-like TAM polarization, were designed and investigated for PTT and gene therapy of non-small cell lung cancer (NSCLC). In an NSCLC model, the nanocarriers demonstrated excellent siRNA delivery ability and a high gene transfection rate of up to 90% in macrophages, thus inhibiting the polarization of about 87% of M2-like TAMs and effectively suppressing the invasion and metastasis of NSCLC. Meanwhile, the unique gold nanosphere structure offered improved PTT and contrast-enhanced ultrasound imaging, thus contributing to the efficient elimination and real-time monitoring of the tumor tissues. These nanocarriers with combined gene and photothermal therapeutic capabilities improved the efficacy of single-modality treatment, and showed the potential to inhibit cancer cell recurrence and metastasis to ultimately cure NSCLC.
Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.
Inamura, K. Lung Cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol. 2017, 7, 193.
Zhang, H. H.; Chen, G. H.; Yu, B.; Cong, H. L. Emerging advanced nanomaterials for cancer photothermal therapy. Rev. Adv. Mater. Sci. 2018, 53, 131–146.
Gao, T.; Zhang, Z. P.; Liang, S.; Fu, S. L.; Mu, W. W.; Guan, L.; Liu, Y.; Chu, Q. H.; Fang, Y. X.; Liu, Y. J. et al. Reshaping antitumor immunity with chemo-photothermal integrated nanoplatform to augment checkpoint blockade-based cancer therapy. Adv. Funct. Mater. 2021, 31, 2100437.
Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015, 9, 6–11.
Peng, J. R.; Xiao, Y.; Li, W. T.; Yang, Q.; Tan, L. W.; Jia, Y. P.; Qu, Y.; Qian, Z. Y. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci. 2018, 5, 1700891.
Li, J.; Xie, L. S.; Li, B.; Yin, C.; Wang, G. H.; Sang, W.; Li, W. X.; Tian, H.; Zhang, Z.; Zhang, X. J. et al. Engineering a hydrogen-sulfide-based nanomodulator to normalize hyperactive photothermal immunogenicity for combination cancer therapy. Adv. Mater. 2021, 33, 2008481.
Yue, Y. L.; Li, F. F.; Li, Y.; Wang, Y. Z.; Guo, X. J.; Cheng, Z. X.; Li, N.; Ma, X. T.; Nie, G. J.; Zhao, X. Biomimetic nanoparticles carrying a repolarization agent of tumor-associated macrophages for remodeling of the inflammatory microenvironment following photothermal therapy. ACS Nano 2021, 15, 15166–15179.
Zhang, L.; Zhang, Y.; Xue, Y. N.; Wu, Y.; Wang, Q. Q.; Xue, L. J.; Su, Z. G.; Zhang, C. Transforming weakness into strength: Photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv. Mater. 2019, 31, 1805936.
Bodor, J. N.; Boumber, Y.; Borghaei, H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer 2020, 126, 260–270.
Li, Z. T.; Ding, Y. Y.; Liu, J.; Wang, J. X.; Mo, F. Y.; Wang, Y. X.; Chen-Mayfield, T. J.; Sondel, P. M.; Hong, S.; Hu, Q. Y. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat. Commun. 2022, 13, 1845.
Chen, M. S.; Miao, Y. Q.; Qian, K.; Zhou, X.; Guo, L. M.; Qiu, Y.; Wang, R.; Gan, Y.; Zhang, X. X. Detachable liposomes combined immunochemotherapy for enhanced triple-negative breast cancer treatment through reprogramming of tumor-associated macrophages. Nano Lett. 2021, 21, 6031–6041.
Conway, E. M.; Pikor, L. A.; Kung, S. H. Y.; Hamilton, M. J.; Lam, S.; Lam, W. L.; Bennewith, K. L. Macrophages, inflammation, and lung cancer. Am. J. Respir. Crit. Care Med. 2016, 193, 116–130.
Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014, 6, 1670–1690.
Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 2006, 42, 717–727.
Tamachi, T.; Takatori, H.; Fujiwara, M.; Hirose, K.; Maezawa, Y.; Kagami, S. I.; Suto, A.; Watanabe, N.; Iwamoto, I.; Nakajima, H. STAT6 inhibits T-bet-independent Th1 cell differentiation. Biochem. Biophys. Res. Commun. 2009, 382, 751–755.
Gong, M.; Zhuo, X. Z.; Ma, A. Q. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med. Sci. Monit. Basic Res. 2017, 23, 240–249.
Binnemars-Postma, K.; Bansal, R.; Storm, G.; Prakash, J. Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J. 2018, 32, 969–978.
Martín-Acosta, P.; Xiao, X. S. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem. 2021, 210, 112993.
Hu, B.; Zhong, L. P.; Weng, Y. H.; Peng, L.; Huang, Y. Y.; Zhao, Y. X.; Liang, X. J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 101.
Shen, J. L.; Zhang, W.; Qi, R. G.; Mao, Z. W.; Shen, H. F. Engineering functional inorganic-organic hybrid systems: Advances in siRNA therapeutics. Chem. Soc. Rev. 2018, 47, 1969–1995.
Subhan, A.; Torchilin, V. P. Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl. Res. 2019, 214, 62–91.
Somasuntharam, I.; Boopathy, A. V.; Khan, R. S.; Martinez, M. D.; Brown, M. E.; Murthy, N.; Davis, M. E. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 2013, 34, 7790–7798.
Zhang, Y. J.; Wang, Y. F.; Zhang, C.; Wang, J.; Pan, D. J.; Liu, J. H.; Feng, F. D. Targeted gene delivery to macrophages by biodegradable star-shaped polymers. ACS Appl. Mater. Interfaces 2016, 8, 3719–3724.
Kargaard, A.; Sluijter, J. P. G.; Klumperman, B. Polymeric siRNA gene delivery–transfection efficiency versus cytotoxicity. J. Control. Release 2019, 316, 263–291.
Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug. Deliv. Rev. 2020, 154–155, 64–78.
Kim, H.; Yuk, S. A.; Dieterly, A. M.; Kwon, S.; Park, J.; Meng, F. F.; Gadalla, H. H.; Cadena, M. J.; Lyle, L. T.; Yeo, Y. Nanosac, a noncationic and soft polyphenol nanocapsule, enables systemic delivery of siRNA to solid tumors. ACS Nano 2021, 15, 4576–4593.
Lei, Y. F.; Tang, L. X.; Xie, Y. Z. Y.; Xianyu, Y. L.; Zhang, L. M.; Wang, P.; Hamada, Y.; Jiang, K.; Zheng, W. F.; Jiang, X. Y. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 2017, 8, 15130.
Li, Z. T.; Wang, Y. X.; Ding, Y. Y.; Repp, L.; Kwon, G. S.; Hu, Q. Y. Cell-based delivery systems: Emerging carriers for immunotherapy. Adv. Funct. Mater. 2021, 31, 2100088.
Son, S.; Kim, N.; You, D. G.; Yoon, H. Y.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Kim, S. H. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics 2017, 7, 9–22.
Rajput, S.; Puvvada, N.; Kumar, B. N. P.; Sarkar, S.; Konar, S.; Bharti, R.; Dey, G.; Mazumdar, A.; Pathak, A.; Fisher, P. B. et al. Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Mol. Pharm. 2015, 12, 4214–4225.
Xu, C. F.; Li, D. D.; Cao, Z. T.; Xiong, M. H.; Yang, X. Z.; Wang, J. Facile hydrophobization of siRNA with anticancer drug for non-cationic nanocarrier-mediated systemic delivery. Nano Lett. 2019, 19, 2688–2693.
Yunus Basha, R.; Venkatachalam, G.; Sampath Kumar, T. S.; Doble, M. Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages. Mater. Sci. Eng. C 2020, 108, 110379.
Huang, B. Q.; He, A. L.; Zhang, P. Y.; Ma, X. R.; Yang, Y.; Wang, J. L.; Wang, J.; Zhang, W. G. Targeted silencing of genes related to acute monocytic leukaemia by CpG(B)-MLAA-34 siRNA conjugates. J. Drug Target. 2020, 28, 516–524.
Landry, B.; Aliabadi, H. M.; Samuel, A.; Gül-Uludağ, H.; Jiang, X. Y.; Kutsch, O.; Uludağ, H. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines. PLoS One 2012, 7, e44197.
Artiga, Á.; Serrano-Sevilla, I.; De Matteis, L.; Mitchell, S. G.; de la Fuente, J. M. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J. Mater. Chem. B 2019, 7, 876–896.
Ding, F.; Gao, X. H.; Huang, X. G.; Ge, H.; Xie, M.; Qian, J. W.; Song, J.; Li, Y. H.; Zhu, X. Y.; Zhang, C. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials 2020, 245, 119976.
Cao, Y.; Chen, Y. L.; Yu, T.; Guo, Y.; Liu, F. Q.; Yao, Y. Z.; Li, P.; Wang, D.; Wang, Z. G.; Chen, Y. et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics 2018, 8, 1327–1339.
Yang, C.; Zhang, Y.; Luo, Y. L.; Qiao, B.; Wang, X. Y.; Zhang, L.; Chen, Q. Q.; Cao, Y.; Wang, Z. G.; Ran, H. T. Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. J. Mater. Chem. B 2020, 8, 380–390.
Chen, Q. W.; Wen, J.; Li, H. J.; Xu, Y. Q.; Liu, F. Y.; Sun, S. G. Recent advances in different modal imaging-guided photothermal therapy. Biomaterials 2016, 106, 144–166.
Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.
Zheng, T. T.; Li, G. G.; Zhou, F.; Wu, R.; Zhu, J. J.; Wang, H. Gold-nanosponge-based multistimuli-responsive drug vehicles for targeted chemo-photothermal therapy. Adv. Mater. 2016, 28, 8218–8226.
Wang, S. M.; Dai, Z. F.; Ke, H. T.; Qu, E. Z.; Qi, X. X.; Zhang, K.; Wang, J. R. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer. Eur. J. Radiol. 2014, 83, 117–122.
Landry, B.; Gül-Uludağ, H.; Plianwong, S.; Kucharski, C.; Zak, Z.; Parmar, M. B.; Kutsch, O.; Jiang, H. X.; Brandwein, J.; Uludağ, H. Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia. J. Control. Release 2016, 224, 8–21.
He, W.; Bennett, M. J.; Luistro, L.; Carvajal, D.; Nevins, T.; Smith, M.; Tyagi, G.; Cai, J.; Wei, X.; Lin, T. A. et al. Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability. Mol. Ther. 2014, 22, 359–370.
Richards Grayson, A. C.; Doody, A. M.; Putnam, D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 2006, 23, 1868–1876.
Wang, W. Y.; Jing, T.; Xia, X. R.; Tang, L. M.; Huang, Z. Q.; Liu, F. Q.; Wang, Z. G.; Ran, H. T.; Li, M. X.; Xia, J. Z. Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomater. Sci. 2019, 7, 4060–4074.
Koerner, J.; Horvath, D.; Herrmann, V. L.; MacKerracher, A.; Gander, B.; Yagita, H.; Rohayem, J.; Groettrup, M. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat. Commun. 2021, 12, 2935.
Li, Z. B.; Guan, Y. Q.; Liu, J. M. The role of STAT-6 as a key transcription regulator in HeLa cell death induced by IFN-γ/TNF-α co-immobilized on nanoparticles. Biomaterials 2014, 35, 5016–5027.
Sedighzadeh, S. S.; Khoshbin, A. P.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Transl. Lung Cancer Res. 2021, 10, 1889–1916.
Wei, C.; Yang, C. G.; Wang, S. Y.; Shi, D. D.; Zhang, C. X.; Lin, X. B.; Liu, Q.; Dou, R. Z.; Xiong, B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer 2019, 18, 64.
Qian, B. Z.; Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51.
Yang, L.; Zhang, Y. Tumor-associated macrophages: From basic research to clinical application. J. Hematol. Oncol. 2017, 10, 58.
Ramesh, A.; Kumar, S.; Nandi, D.; Kulkarni, A. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv. Mater. 2019, 31, 1904364.
Liu, L. Q.; Wang, Y.; Guo, X.; Zhao, J. Y.; Zhou, S. B. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small 2020, 16, 2003543.
Li, H. L.; Huang, N.; Zhu, W. K.; Wu, J. C.; Yang, X. H.; Teng, W. J.; Tian, J. H.; Fang, Z. H.; Luo, Y. B.; Chen, M. et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018, 18, 579.
Yang, H.; Zhang, Q. N.; Xu, M.; Wang, L.; Chen, X. W.; Feng, Y. Q.; Li, Y. N.; Zhang, X.; Cui, W. M.; Jia, X. D. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis.
Gordon, S. R.; Maute, R. L.; Dulken, B. W.; Hutter, G.; George, B. M.; McCracken, M. N.; Gupta, R.; Tsai, J. M.; Sinha, R.; Corey, D. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545, 495–499.