AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrasound-visualized nanocarriers with siRNA for targeted inhibition of M2-like TAM polarization to enhance photothermal therapy in NSCLC

Wenhao Lv1,2,§Chen Xu2,§Hao Wu1Yangyang Zhu1Ozioma Udochukwu Akakuru2Hui Du2Fang Nie1( )Aiguo Wu2( )Juan Li2( )
Ultrasound Medical Center, Lanzhou University Second Hospital, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou 730000, China
Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China

§ Wenhao Lv and Chen Xu contributed equally to this work.

Show Author Information

Graphical Abstract

An ultrasound-visualized nanocarrier is developed to deliver siRNA that inhibits M2 macrophage polarization and enhances the therapeutic effectiveness of photothermal therapy for non-small cell lung cancer.

Abstract

Photothermal therapy (PTT) has received a lot of attention as a promising strategy for eliminating tumors quickly. However, the unavoidable inflammatory response during the treatment might result in a high concentration of M2-like tumor-associated macrophages (TAMs), increasing the risk of tumor recurrence and metastasis. To address this problem, gold-based nanocarriers (PGMP-small interfering RNA (siRNA) nanoparticles (NPs)) containing STAT6siRNA, that inhibited M2-like TAM polarization, were designed and investigated for PTT and gene therapy of non-small cell lung cancer (NSCLC). In an NSCLC model, the nanocarriers demonstrated excellent siRNA delivery ability and a high gene transfection rate of up to 90% in macrophages, thus inhibiting the polarization of about 87% of M2-like TAMs and effectively suppressing the invasion and metastasis of NSCLC. Meanwhile, the unique gold nanosphere structure offered improved PTT and contrast-enhanced ultrasound imaging, thus contributing to the efficient elimination and real-time monitoring of the tumor tissues. These nanocarriers with combined gene and photothermal therapeutic capabilities improved the efficacy of single-modality treatment, and showed the potential to inhibit cancer cell recurrence and metastasis to ultimately cure NSCLC.

Electronic Supplementary Material

Download File(s)
12274_2022_4767_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

[2]

Inamura, K. Lung Cancer: Understanding its molecular pathology and the 2015 WHO classification. Front. Oncol. 2017, 7, 193.

[3]

Zhang, H. H.; Chen, G. H.; Yu, B.; Cong, H. L. Emerging advanced nanomaterials for cancer photothermal therapy. Rev. Adv. Mater. Sci. 2018, 53, 131–146.

[4]

Gao, T.; Zhang, Z. P.; Liang, S.; Fu, S. L.; Mu, W. W.; Guan, L.; Liu, Y.; Chu, Q. H.; Fang, Y. X.; Liu, Y. J. et al. Reshaping antitumor immunity with chemo-photothermal integrated nanoplatform to augment checkpoint blockade-based cancer therapy. Adv. Funct. Mater. 2021, 31, 2100437.

[5]

Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015, 9, 6–11.

[6]

Peng, J. R.; Xiao, Y.; Li, W. T.; Yang, Q.; Tan, L. W.; Jia, Y. P.; Qu, Y.; Qian, Z. Y. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci. 2018, 5, 1700891.

[7]

Li, J.; Xie, L. S.; Li, B.; Yin, C.; Wang, G. H.; Sang, W.; Li, W. X.; Tian, H.; Zhang, Z.; Zhang, X. J. et al. Engineering a hydrogen-sulfide-based nanomodulator to normalize hyperactive photothermal immunogenicity for combination cancer therapy. Adv. Mater. 2021, 33, 2008481.

[8]

Yue, Y. L.; Li, F. F.; Li, Y.; Wang, Y. Z.; Guo, X. J.; Cheng, Z. X.; Li, N.; Ma, X. T.; Nie, G. J.; Zhao, X. Biomimetic nanoparticles carrying a repolarization agent of tumor-associated macrophages for remodeling of the inflammatory microenvironment following photothermal therapy. ACS Nano 2021, 15, 15166–15179.

[9]

Zhang, L.; Zhang, Y.; Xue, Y. N.; Wu, Y.; Wang, Q. Q.; Xue, L. J.; Su, Z. G.; Zhang, C. Transforming weakness into strength: Photothermal-therapy-induced inflammation enhanced cytopharmaceutical chemotherapy as a combination anticancer treatment. Adv. Mater. 2019, 31, 1805936.

[10]

Bodor, J. N.; Boumber, Y.; Borghaei, H. Biomarkers for immune checkpoint inhibition in non-small cell lung cancer (NSCLC). Cancer 2020, 126, 260–270.

[11]

Li, Z. T.; Ding, Y. Y.; Liu, J.; Wang, J. X.; Mo, F. Y.; Wang, Y. X.; Chen-Mayfield, T. J.; Sondel, P. M.; Hong, S.; Hu, Q. Y. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat. Commun. 2022, 13, 1845.

[12]

Chen, M. S.; Miao, Y. Q.; Qian, K.; Zhou, X.; Guo, L. M.; Qiu, Y.; Wang, R.; Gan, Y.; Zhang, X. X. Detachable liposomes combined immunochemotherapy for enhanced triple-negative breast cancer treatment through reprogramming of tumor-associated macrophages. Nano Lett. 2021, 21, 6031–6041.

[13]

Conway, E. M.; Pikor, L. A.; Kung, S. H. Y.; Hamilton, M. J.; Lam, S.; Lam, W. L.; Bennewith, K. L. Macrophages, inflammation, and lung cancer. Am. J. Respir. Crit. Care Med. 2016, 193, 116–130.

[14]

Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014, 6, 1670–1690.

[15]

Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 2006, 42, 717–727.

[16]

Tamachi, T.; Takatori, H.; Fujiwara, M.; Hirose, K.; Maezawa, Y.; Kagami, S. I.; Suto, A.; Watanabe, N.; Iwamoto, I.; Nakajima, H. STAT6 inhibits T-bet-independent Th1 cell differentiation. Biochem. Biophys. Res. Commun. 2009, 382, 751–755.

[17]

Gong, M.; Zhuo, X. Z.; Ma, A. Q. STAT6 upregulation promotes M2 macrophage polarization to suppress atherosclerosis. Med. Sci. Monit. Basic Res. 2017, 23, 240–249.

[18]

Binnemars-Postma, K.; Bansal, R.; Storm, G.; Prakash, J. Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J. 2018, 32, 969–978.

[19]

Martín-Acosta, P.; Xiao, X. S. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem. 2021, 210, 112993.

[20]

Hu, B.; Zhong, L. P.; Weng, Y. H.; Peng, L.; Huang, Y. Y.; Zhao, Y. X.; Liang, X. J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 101.

[21]

Shen, J. L.; Zhang, W.; Qi, R. G.; Mao, Z. W.; Shen, H. F. Engineering functional inorganic-organic hybrid systems: Advances in siRNA therapeutics. Chem. Soc. Rev. 2018, 47, 1969–1995.

[22]

Subhan, A.; Torchilin, V. P. Efficient nanocarriers of siRNA therapeutics for cancer treatment. Transl. Res. 2019, 214, 62–91.

[23]

Somasuntharam, I.; Boopathy, A. V.; Khan, R. S.; Martinez, M. D.; Brown, M. E.; Murthy, N.; Davis, M. E. Delivery of Nox2-NADPH oxidase siRNA with polyketal nanoparticles for improving cardiac function following myocardial infarction. Biomaterials 2013, 34, 7790–7798.

[24]

Zhang, Y. J.; Wang, Y. F.; Zhang, C.; Wang, J.; Pan, D. J.; Liu, J. H.; Feng, F. D. Targeted gene delivery to macrophages by biodegradable star-shaped polymers. ACS Appl. Mater. Interfaces 2016, 8, 3719–3724.

[25]

Kargaard, A.; Sluijter, J. P. G.; Klumperman, B. Polymeric siRNA gene delivery–transfection efficiency versus cytotoxicity. J. Control. Release 2019, 316, 263–291.

[26]

Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug. Deliv. Rev. 2020, 154–155, 64–78.

[27]

Kim, H.; Yuk, S. A.; Dieterly, A. M.; Kwon, S.; Park, J.; Meng, F. F.; Gadalla, H. H.; Cadena, M. J.; Lyle, L. T.; Yeo, Y. Nanosac, a noncationic and soft polyphenol nanocapsule, enables systemic delivery of siRNA to solid tumors. ACS Nano 2021, 15, 4576–4593.

[28]

Lei, Y. F.; Tang, L. X.; Xie, Y. Z. Y.; Xianyu, Y. L.; Zhang, L. M.; Wang, P.; Hamada, Y.; Jiang, K.; Zheng, W. F.; Jiang, X. Y. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 2017, 8, 15130.

[29]

Li, Z. T.; Wang, Y. X.; Ding, Y. Y.; Repp, L.; Kwon, G. S.; Hu, Q. Y. Cell-based delivery systems: Emerging carriers for immunotherapy. Adv. Funct. Mater. 2021, 31, 2100088.

[30]

Son, S.; Kim, N.; You, D. G.; Yoon, H. Y.; Yhee, J. Y.; Kim, K.; Kwon, I. C.; Kim, S. H. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics 2017, 7, 9–22.

[31]

Rajput, S.; Puvvada, N.; Kumar, B. N. P.; Sarkar, S.; Konar, S.; Bharti, R.; Dey, G.; Mazumdar, A.; Pathak, A.; Fisher, P. B. et al. Overcoming Akt induced therapeutic resistance in breast cancer through siRNA and thymoquinone encapsulated multilamellar gold niosomes. Mol. Pharm. 2015, 12, 4214–4225.

[32]

Xu, C. F.; Li, D. D.; Cao, Z. T.; Xiong, M. H.; Yang, X. Z.; Wang, J. Facile hydrophobization of siRNA with anticancer drug for non-cationic nanocarrier-mediated systemic delivery. Nano Lett. 2019, 19, 2688–2693.

[33]

Yunus Basha, R.; Venkatachalam, G.; Sampath Kumar, T. S.; Doble, M. Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages. Mater. Sci. Eng. C 2020, 108, 110379.

[34]

Huang, B. Q.; He, A. L.; Zhang, P. Y.; Ma, X. R.; Yang, Y.; Wang, J. L.; Wang, J.; Zhang, W. G. Targeted silencing of genes related to acute monocytic leukaemia by CpG(B)-MLAA-34 siRNA conjugates. J. Drug Target. 2020, 28, 516–524.

[35]

Landry, B.; Aliabadi, H. M.; Samuel, A.; Gül-Uludağ, H.; Jiang, X. Y.; Kutsch, O.; Uludağ, H. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines. PLoS One 2012, 7, e44197.

[36]

Artiga, Á.; Serrano-Sevilla, I.; De Matteis, L.; Mitchell, S. G.; de la Fuente, J. M. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J. Mater. Chem. B 2019, 7, 876–896.

[37]

Ding, F.; Gao, X. H.; Huang, X. G.; Ge, H.; Xie, M.; Qian, J. W.; Song, J.; Li, Y. H.; Zhu, X. Y.; Zhang, C. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials 2020, 245, 119976.

[38]

Cao, Y.; Chen, Y. L.; Yu, T.; Guo, Y.; Liu, F. Q.; Yao, Y. Z.; Li, P.; Wang, D.; Wang, Z. G.; Chen, Y. et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics 2018, 8, 1327–1339.

[39]

Yang, C.; Zhang, Y.; Luo, Y. L.; Qiao, B.; Wang, X. Y.; Zhang, L.; Chen, Q. Q.; Cao, Y.; Wang, Z. G.; Ran, H. T. Dual ultrasound-activatable nanodroplets for highly-penetrative and efficient ovarian cancer theranostics. J. Mater. Chem. B 2020, 8, 380–390.

[40]

Chen, Q. W.; Wen, J.; Li, H. J.; Xu, Y. Q.; Liu, F. Y.; Sun, S. G. Recent advances in different modal imaging-guided photothermal therapy. Biomaterials 2016, 106, 144–166.

[41]

Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.

[42]

Zheng, T. T.; Li, G. G.; Zhou, F.; Wu, R.; Zhu, J. J.; Wang, H. Gold-nanosponge-based multistimuli-responsive drug vehicles for targeted chemo-photothermal therapy. Adv. Mater. 2016, 28, 8218–8226.

[43]

Wang, S. M.; Dai, Z. F.; Ke, H. T.; Qu, E. Z.; Qi, X. X.; Zhang, K.; Wang, J. R. Contrast ultrasound-guided photothermal therapy using gold nanoshelled microcapsules in breast cancer. Eur. J. Radiol. 2014, 83, 117–122.

[44]

Landry, B.; Gül-Uludağ, H.; Plianwong, S.; Kucharski, C.; Zak, Z.; Parmar, M. B.; Kutsch, O.; Jiang, H. X.; Brandwein, J.; Uludağ, H. Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia. J. Control. Release 2016, 224, 8–21.

[45]

He, W.; Bennett, M. J.; Luistro, L.; Carvajal, D.; Nevins, T.; Smith, M.; Tyagi, G.; Cai, J.; Wei, X.; Lin, T. A. et al. Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability. Mol. Ther. 2014, 22, 359–370.

[46]

Richards Grayson, A. C.; Doody, A. M.; Putnam, D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 2006, 23, 1868–1876.

[47]

Wang, W. Y.; Jing, T.; Xia, X. R.; Tang, L. M.; Huang, Z. Q.; Liu, F. Q.; Wang, Z. G.; Ran, H. T.; Li, M. X.; Xia, J. Z. Melanin-loaded biocompatible photosensitive nanoparticles for controlled drug release in combined photothermal-chemotherapy guided by photoacoustic/ultrasound dual-modality imaging. Biomater. Sci. 2019, 7, 4060–4074.

[48]

Koerner, J.; Horvath, D.; Herrmann, V. L.; MacKerracher, A.; Gander, B.; Yagita, H.; Rohayem, J.; Groettrup, M. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat. Commun. 2021, 12, 2935.

[49]

Li, Z. B.; Guan, Y. Q.; Liu, J. M. The role of STAT-6 as a key transcription regulator in HeLa cell death induced by IFN-γ/TNF-α co-immobilized on nanoparticles. Biomaterials 2014, 35, 5016–5027.

[50]

Sedighzadeh, S. S.; Khoshbin, A. P.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Transl. Lung Cancer Res. 2021, 10, 1889–1916.

[51]

Wei, C.; Yang, C. G.; Wang, S. Y.; Shi, D. D.; Zhang, C. X.; Lin, X. B.; Liu, Q.; Dou, R. Z.; Xiong, B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer 2019, 18, 64.

[52]

Qian, B. Z.; Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51.

[53]

Yang, L.; Zhang, Y. Tumor-associated macrophages: From basic research to clinical application. J. Hematol. Oncol. 2017, 10, 58.

[54]

Ramesh, A.; Kumar, S.; Nandi, D.; Kulkarni, A. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv. Mater. 2019, 31, 1904364.

[55]

Liu, L. Q.; Wang, Y.; Guo, X.; Zhao, J. Y.; Zhou, S. B. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small 2020, 16, 2003543.

[56]

Li, H. L.; Huang, N.; Zhu, W. K.; Wu, J. C.; Yang, X. H.; Teng, W. J.; Tian, J. H.; Fang, Z. H.; Luo, Y. B.; Chen, M. et al. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2. BMC Cancer 2018, 18, 579.

[57]
YangH.ZhangQ. N.XuM.WangL.ChenX. W.FengY. Q.LiY. N.ZhangX.CuiW. M.JiaX. D. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesisMol. Cancer2020194110.1186/s12943-020-01165-x

Yang, H.; Zhang, Q. N.; Xu, M.; Wang, L.; Chen, X. W.; Feng, Y. Q.; Li, Y. N.; Zhang, X.; Cui, W. M.; Jia, X. D. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol. Cancer 2020, 19, 41.

[58]

Gordon, S. R.; Maute, R. L.; Dulken, B. W.; Hutter, G.; George, B. M.; McCracken, M. N.; Gupta, R.; Tsai, J. M.; Sinha, R.; Corey, D. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545, 495–499.

Nano Research
Pages 882-893
Cite this article:
Lv W, Xu C, Wu H, et al. Ultrasound-visualized nanocarriers with siRNA for targeted inhibition of M2-like TAM polarization to enhance photothermal therapy in NSCLC. Nano Research, 2023, 16(1): 882-893. https://doi.org/10.1007/s12274-022-4767-7
Topics:

1256

Views

5

Crossref

12

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 06 May 2022
Revised: 12 July 2022
Accepted: 12 July 2022
Published: 30 August 2022
© Tsinghua University Press 2022
Return