AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of hollow mesoporous ZnMn2O4/C microspheres with carbon nanotubes embedded in shells for high-performance aqueous zinc ions batteries

Feiran Chen1Qinru Wang1Xiaofeng Yang1Chao Wang1Hu Zang1Yingwen Tang2Tao Li3Baoyou Geng1,4( )
College of Chemistry and Materials Science, the Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 100029, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
Show Author Information

Graphical Abstract

The mesoporous hollow ZnMn2O4/C microspheres with carbon nanotubes embedded in the shell are synthesized for aqueous zinc ion batteries. The specific capacity remains at 209.71 mAh·g−1 after 150 cycles at a current density of 0.5 A·g−1.

Abstract

Recently, rechargeable zinc-ion batteries have been considered as the future development direction of large-scale energy storage due to their low price, safety, environmental friendliness, and excellent electrochemical performance. However, high-capacity, long-cycle stable cathode materials that can meet the demand are still to be developed. Herein, the hollow mesoporous ZnMn2O4/C microsphere cathode material with carbon nanotubes embedded in the shell was prepared by spray pyrolysis for the first time. Its capacity remained at 209.71 mAh·g−1 after 150 cycles at a rate of 0.5 A·g−1, and still maintained a specific capacity of 100.06 mAh·g−1 at a rate of 1 A·g−1 after 1,000 cycles. The outstanding performance is attributed to the hollow structure that can effectively buffer large volume changes caused by ion intercalation and deintercalation, excellent porosity, cationic defects, and high electrical conductivity of carbon nanotubes and its strong adsorption to ZnMn2O4 nanoparticles.

Electronic Supplementary Material

Download File(s)
12274_2022_4772_MOESM1_ESM.pdf (4.7 MB)

References

[1]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[2]

Tong, Y. F.; Wang, X. H.; Zhang, Y.; Huang, W. W. Recent advances of covalent organic frameworks in lithium ion batteries. Inorg. Chem. Front. 2021, 8, 558–571.

[3]

Liu, Z.; Pulletikurthi, G.; Endres, F. A prussian blue/zinc secondary battery with a bio-ionic liquid–water mixture as electrolyte. ACS Appl. Mater. Interfaces 2016, 8, 12158–12164.

[4]

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

[5]

Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

[6]

Ma, L. T.; Li, N.; Long, C. B.; Dong, B. B.; Fang, D. L.; Liu, Z. X.; Zhao, Y. W.; Li, X. L.; Fan, J.; Chen, S. M. et al. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv. Funct. Mater. 2019, 29, 1906142.

[7]

Li, G. L.; Yang, Z.; Jiang, Y.; Jin, C. H.; Huang, W.; Ding, X. L.; Huang, Y. H. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 2016, 25, 211–217.

[8]

Qin, H. G.; Yang, Z. H.; Chen, L. L.; Chen, X.; Wang, L. M. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J. Mater. Chem. A 2018, 6, 23757–23765.

[9]

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res 2020, 13, 215–224.

[10]

Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2017, 2, 17110.

[11]

Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

[12]

Li, C. G.; Zhang, X. D.; He, W.; Xu, G. G.; Sun, R. Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications. J. Power Sources 2020, 449, 227596.

[13]

Ming, J.; Guo, J.; Xia, C.; Wang, W. X.; Alshareef, H. N. Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84.

[14]

Liu, T. T.; Cheng, X.; Yu, H. X.; Zhu, H. J.; Peng, N.; Zheng, R. T.; Zhang, J. D.; Shui, M.; Cui, Y. H.; Shu, J. An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Mater. 2019, 18, 68–91.

[15]

Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Yu, N.; Geng, B. Y. Scalable fabrication of NiCoMnO4 yolk–shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries. J. Colloid Interface Sci. 2022, 626, 314–323.

[16]

Jia, H.; Wang, Z. Q.; Tawiah, B.; Wang, Y. D.; Chan, C. Y.; Fei, B.; Pan, F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020, 70, 104523.

[17]

Qin, L. P.; Zhu, Q.; Li, L. J.; Fang, G. Z.; Li, S. J.; Cheng, H.; Guo, W. M.; Gao, H. L. Improved electrochemical performance of ZnMn2O4/CuO composite as cathode materials for aqueous zinc-ion batteries. Ionics 2021, 27, 4783–4792.

[18]

Yao, Z. F.; Cai, D. P.; Cui, Z. X.; Wang, Q. T.; Zhan, H. B. Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries. Ceram. Int. 2020, 46, 11237–11245.

[19]

Wu, X. W.; Xiang, Y. H.; Peng, Q. J.; Wu, X. S.; Li, Y. H.; Tang, F.; Song, R. C.; Liu, Z. X.; He, Z. Q.; Wu, X. M. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 2017, 5, 17990–17997.

[20]

Gao, F.; Mei, B.; Xu, X. Y.; Ren, J. H.; Zhao, D. C.; Zhang, Z.; Wang, Z. L.; Wu, Y. T.; Liu, X.; Zhang, Y. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 137742.

[21]

Sheng, J.; Zhu, S.; Jia, G. D.; Liu, X.; Li, Y. Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Res. 2021, 14, 4541–4547.

[22]

Park, G. D.; Kim, J. H.; Park, S. K.; Kang, Y. C. MoSe2 embedded CNT-reduced graphene oxide composite microsphere with superior sodium ion storage and electrocatalytic hydrogen evolution performances. ACS Appl. Mater. Interfaces 2017, 9, 10673–10683.

[23]

Zeng, L. C.; Pan, F. S.; Li, W. H.; Jiang, Y.; Zhong, X. W.; Yu, Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode. Nanoscale 2014, 6, 9579–9587.

[24]

Shchegolkov, A. V.; Komarov, F. F.; Lipkin, M. S.; Milchanin, O. V.; Parfimovich, I. D.; Shchegolkov, A. V.; Semenkova, A. V.; Velichko, A. V.; Chebotov, K. D.; Nokhaeva, V. A. Synthesis and study of cathode materials based on carbon nanotubes for lithium-ion batteries. Inorg. Mater.: Appl. Res. 2021, 12, 1281–1287.

[25]
LiuY. Z.ChiX. W.HanQ.DuY. X.HuangJ. Q.LiuY.YangJ. H. α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteriesJ. Power Sources201944322724410.1016/j.jpowsour.2019.227244

Liu, Y. Z.; Chi, X. W.; Han, Q.; Du, Y. X.; Huang, J. Q.; Liu, Y.; Yang, J. H. α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries. J. Power Sources 2019, 443, 227244.

[26]

Zhou, Y.; Wang, C.; Chen, F. R.; Wang, T. J.; Ni, Y. Y.; Sun, H. X.; Yu, N.; Geng, B. Y. Synchronous constructing ion channels and confined space of Co3O4 anode for high-performance lithium-ion batteries. Nano Res. 2022, 15, 6192–6199.

[27]

Liu, Z.; Yu, M. K.; Wang, X. D.; Lai, F. Y.; Wang, C.; Yu, N.; Sun, H. X.; Geng, B. Y. Sandwich shelled TiO2@Co3O4@Co3O4/C hollow spheres as anode materials for lithium ion batteries. Chem. Commun. 2021, 57, 1786–1789.

[28]

Sun, H. X.; Du, H. R.; Yu, M. K.; Huang, K. F.; Yu, N.; Geng, B. Y. Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries. Nano Res. 2019, 12, 1937–1942.

[29]

Su, L.; Gao, L. J.; Du, Q. H.; Hou, L. Y.; Yin, X. C.; Feng, M. Y.; Yang, W.; Ma, Z. P.; Shao, G. J. Formation of micron-sized nickel cobalt sulfide solid spheres with high tap density for enhancing pseudocapacitive properties. ACS Sustainable Chem. Eng. 2017, 5, 9945–9954.

[30]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[31]

Chen, L. L.; Yang, Z. H.; Qin, H. G.; Zeng, X.; Meng, J. L. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J. Power Sources 2019, 425, 162–169.

[32]

Chen, F. R.; Liu, Z.; Yu, N.; Sun, H. X.; Geng, B. Y. Constructing an interspace in MnO@NC microspheres for superior lithium ion battery anodes. Chem. Commun. 2021, 57, 10951–10954.

[33]

Jiang, L.; Wu, Z. Y.; Wang, Y. A.; Tian, W. C.; Yi, Z. Y.; Cai, C. L.; Jiang, Y. C.; Hu, L. F. Ultrafast zinc-ion diffusion ability observed in 6.0-nanometer spinel nanodots. ACS Nano 2019, 13, 10376–10385.

[34]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[35]

Ma, S. C.; Sun, M.; Wang, S. X.; Li, D. S.; Liu, W. L.; Ren, M. M.; Kong, F. G.; Wang, S. J.; Xia, Y. M. Zinc manganate/manganic oxide bi-component nanorod as excellent cathode for zinc-ion battery. Scripta Mater. 2021, 194, 113707.

Nano Research
Pages 1726-1732
Cite this article:
Chen F, Wang Q, Yang X, et al. Construction of hollow mesoporous ZnMn2O4/C microspheres with carbon nanotubes embedded in shells for high-performance aqueous zinc ions batteries. Nano Research, 2023, 16(1): 1726-1732. https://doi.org/10.1007/s12274-022-4772-x
Topics:

1062

Views

19

Crossref

20

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 29 June 2022
Revised: 10 July 2022
Accepted: 13 July 2022
Published: 08 August 2022
© Tsinghua University Press 2022
Return