Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The aging-induced performance enhancement of the perovskite solar cells (PSCs) has been considered to be associated with the oxidation progress of the hole-transporting layer. Whereas the influence of the structural evolution of the passivation layer is underestimated. In this work, a spontaneous relaxation of two-dimensional (2D) passivation layer with increased n-value structure is observed, which can be accelerated under ambient atmosphere. It is demonstrated that device with relaxed 2D passivation layer exhibits reduced non-radiative recombination and optimized charge transfer property, contributing substantially to the aging-induced performance enhancement in 2D-3D heterostructured PSCs. Finally, a high fill factor of 84.15% of the devices is obtained with the relaxed 2D passivation layer, suggesting the spontaneous relaxation of 2D passivation layer is playing a key role in achieving high quality optoelectronic devices.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
Cai, B.; Xing, Y. D.; Yang, Z.; Zhang, W. H.; Qiu, J. S. High performance hybrid solar cells sensitized by organolead halide perovskites. Energy Environ. Sci. 2013, 6, 1480–1485.
Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.
Yu, W. J.; Sun, X. R.; Xiao, M.; Hou, T.; Liu, X.; Zheng, B. L.; Yu, H.; Zhang, M.; Huang, Y. L.; Hao, X. J. Recent advances on interface engineering of perovskite solar cells. Nano Res. 2022, 15, 85–103.
Ricciardulli, A. G.; Yang, S.; Smet, J. H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336.
Chen, P.; Bai, Y.; Wang, S. C.; Lyu, M. Q.; Yun, J. H.; Wang, L. Z. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923.
Lin, Y.; Bai, Y.; Fang, Y. J.; Chen, Z. L.; Yang, S.; Zheng, X. P.; Tang, S.; Liu, Y.; Zhao, J. J.; Huang, J. S. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 2018, 9, 654–658.
Liu, Y. H.; Akin, S.; Hinderhofer, A.; Eickemeyer, F. T.; Zhu, H. W.; Seo, J. Y.; Zhang, J. H.; Schreiber, F.; Zhang, H.; Zakeeruddin, S. M. et al. Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers. Angew. Chem., Int. Ed. 2020, 59, 15688–15694.
Wu, G. B.; Liang, R.; Ge, M. Z.; Sun, G. X.; Zhang, Y.; Xing, G. C. Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2105635.
Akin, S.; Dong, B. T.; Pfeifer, L.; Liu, Y. H.; Graetzel, M.; Hagfeldt, A. Organic ammonium halide modulators as effective strategy for enhanced perovskite photovoltaic performance. Adv. Sci. 2021, 8, 2004593.
Zhang, C. L.; Wu, S. H.; Tao, L. M.; Arumugam, G. M.; Liu, C.; Wang, Z.; Zhu, S. S.; Yang, Y. Z.; Lin, J.; Liu, X. Y. et al. Fabrication strategy for efficient 2D/3D perovskite solar cells enabled by diffusion passivation and strain compensation. Adv. Energy Mater. 2020, 10, 2002004.
Sutanto, A. A.; Caprioglio, P.; Drigo, N.; Hofstetter, Y. J.; Garcia-Benito, I.; Queloz, V. I. E.; Neher, D.; Nazeeruddin, M. K.; Stolterfoht, M.; Vaynzof, Y. et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 2021, 7, 1903–1916.
Liu, T. T.; Zhang, J.; Qin, M. C.; Wu, X.; Li, F. Z.; Lu, X. H.; Zhu, Z. L.; Jen, A. K. Y. Modifying surface termination of CsPbI3 grain boundaries by 2D perovskite layer for efficient and stable photovoltaics. Adv. Funct. Mater. 2021, 31, 2009515.
Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684.
He, M. S.; Liang, J. H.; Zhang, Z. F.; Qiu, Y. K.; Deng, Z. H.; Xu, H.; Wang, J. L.; Yang, Y. J.; Chen, Z. H.; Chen, C. C. Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 25831–25841.
Hawash, Z.; Ono, L. K.; Qi, Y. B. Moisture and oxygen enhance conductivity of LiTFSI-doped spiro-MeOTAD hole transport layer in perovskite solar cells. Adv. Mater. Interfaces 2016, 3, 1600117.
Cho, Y.; Kim, H. D.; Zheng, J. H.; Bing, J. M.; Li, Y.; Zhang, M.; Green, M. A.; Wakamiya, A.; Huang, S. J.; Ohkita, H. et al. Elucidating mechanisms behind ambient storage-induced efficiency improvements in perovskite solar cells. ACS Energy Lett. 2021, 6, 925–933.
Roose, B.; Ummadisingu, A.; Correa-Baena, J. P.; Saliba, M.; Hagfeldt, A.; Graetzel, M.; Steiner, U.; Abate, A. Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy 2017, 39, 24–29.
Fei, C. B.; Wang, H. Age-induced recrystallization in perovskite solar cells. Org. Electron. 2019, 68, 143–150.
Bi, C.; Zheng, X. P.; Chen, B.; Wei, H. T.; Huang, J. S. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: Mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2017, 2, 1400–1406.
Moghadamzadeh, S.; Hossain, I. M.; Jakoby, M.; Nejand, B. A.; Rueda-Delgado, D.; Schwenzer, J. A.; Gharibzadeh, S.; Abzieher, T.; Khan, M. R.; Haghighirad, A. A. et al. Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells. J. Mater. Chem. A 2020, 8, 670–682.
Kim, H.; Lee, S. U.; Lee, D. Y.; Paik, M. J.; Na, H.; Lee, J.; Seok, S. I. Optimal interfacial engineering with different length of alkylammonium halide for efficient and stable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1902740.
Ji, C.; Liang, C. J.; Song, Q.; Gong, H. K.; Liu, N.; You, F. T.; Li, D.; He, Z. Q. Interface engineering of 2D/3D perovskite heterojunction improves photovoltaic efficiency and stability. Solar RRL 2021, 5, 2100072.
Zhou, N.; Shen, Y. H.; Li, L.; Tan, S. Q.; Liu, N.; Zheng, G. H. J.; Chen, Q.; Zhou, H. P. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 2018, 140, 459–465.
Sutanto, A. A.; Drigo, N.; Queloz, V. I. E.; Garcia-Benito, I.; Kirmani, A. R.; Richter, L. J.; Schouwink, P. A.; Cho, K. T.; Paek, S.; Nazeeruddin, M. K. et al. Dynamical evolution of the 2D/3D interface: A hidden driver behind perovskite solar cell instability. J. Mater. Chem. A 2020, 8, 2343–2348.
Sutanto, A. A.; Szostak, R.; Drigo, N.; Queloz, V. I. E.; Marchezi, P. E.; Germino, J. C.; Tolentino, H. C. N.; Nazeeruddin, M. K.; Nogueira, A. F.; Grancini, G.
Yu, J. C.; Badgujar, S.; Jung, E. D.; Singh, V. K.; Kim, D. W.; Gierschner, J.; Lee, E.; Kim, Y. S.; Cho, S.; Kwon, M. S. et al. Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 2019, 31, 1805554.
Zou, H. Y.; Guo, D. P.; He, B. W.; Yu, J. G.; Fan, K. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots. Appl. Surf. Sci. 2018, 430, 625–631.
Chen, R. S.; Feng, Y. L.; Jing, L.; Wang, M. H.; Ma, H. R.; Bian, J. M.; Shi, Y. T. Low-temperature sprayed carbon electrode in modular HTL-free perovskite solar cells: A comparative study on the choice of carbon sources. J. Mater. Chem. C 2021, 9, 3546–3554.
Li, G. D.; Song, J.; Wang, D.; Sun, W. H.; Wu, J. H.; Lan, Z. Undoped 2, 2′, 7, 7′-tetrakis (N, N-p-dimethoxy-phenylamino)-9, 9′-spirobifluorene and PbS binary hole-transporter for efficient and stable planar perovskite solar cells. J. Power Sources 2021, 481, 229149.
Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv. Energy Mater. 2015, 5, 1400812.
Zhou, Q. W.; Duan, J. L.; Du, J.; Guo, Q. Y.; Zhang, Q. Y.; Yang, X. Y.; Duan, Y. Y.; Tang, Q. W. Tailored lattice "tape" to confine tensile interface for 11.08%-efficiency all-inorganic CsPbBr3 perovskite solar cell with an ultrahigh voltage of 1. 702 V. Adv. Sci. 2021, 8, 2101418.
Yang, J. M.; Xiong, S. B.; Song, J. N.; Wu, H. B.; Zeng, Y. H.; Lu, L. Y.; Shen, K. C.; Hao, T. Y.; Ma, Z. F.; Liu, F. et al. Energetics and energy loss in 2D ruddlesden-popper perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000687.
Yuan, L. G.; Luo, H. M.; Wang, J. R.; Xu, Z. H.; Li, J.; Jiang, Q. S.; Yan, K. Y. Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. J. Mater. Chem. A 2021, 9, 4781–4788.
Jang, Y. W.; Lee, S.; Yeom, K. M.; Jeong, K.; Choi, K.; Choi, M.; Noh, J. H. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 2021, 6, 63–71.
Bisquert, J.; Bertoluzzi, L.; Mora-Sero, I.; Garcia-Belmonte, G. Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination. J. Phys. Chem. C 2014, 118, 18983–18991.
Pascoe, A. R.; Duffy, N. W.; Scully, A. D.; Huang, F. Z.; Cheng, Y. B. Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy. J. Phys. Chem. C 2015, 119, 4444–4453.
Cohen, B. E.; Wierzbowska, M.; Etgar, L. High efficiency and high open circuit voltage in quasi 2D perovskite based solar cells. Adv. Funct. Mater. 2017, 27, 1604733.
Li, M. K.; Chen, T. P.; Lin, Y. F.; Raghavan, C. M.; Chen, W. L.; Yang, S. H.; Sankar, R.; Luo, C. W.; Chang, Y. M.; Chen, C. W. Intrinsic carrier transport of phase-pure homologous 2D organolead halide hybrid perovskite single crystals. Small 2018, 14, 1803763.
Hou, W. J.; Han, G. Y.; Ou, T.; Xiao, Y. M.; Chen, Q. An efficient and stable perovskite solar cell with suppressed defects by employing dithizone as a lead indicator. Angew. Chem., Int. Ed. 2020, 59, 21409–21413.
Li, X. Q.; Li, W. H.; Yang, Y. J.; Lai, X.; Su, Q.; Wu, D.; Li, G. Q.; Wang, K.; Chen, S. M.; Sun, X. W. et al. Defects passivation with dithienobenzodithiophene-based π-conjugated polymer for enhanced performance of perovskite solar cells. Solar RRL 2019, 3, 1900029.
Jiang, M. C.; Yuan, J. F.; Cao, G. Z.; Tian, J. J. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem. Eng. J. 2020, 402, 126152.
Song, S.; Yang, S. J.; Choi, J.; Han, S. G.; Park, K.; Lee, H.; Min, J.; Ryu, S.; Cho, K. Surface stabilization of a formamidinium perovskite solar cell using quaternary ammonium salt. ACS Appl. Mater. Interfaces 2021, 13, 37052–37062.
Wang, H. L.; Song, J.; Li, Z. K.; Li, L. D.; Li, J. H.; Li, X. B.; Qu, J. L.; Wong, W. Y. A linear conjugated tetramer as a surface-modification layer to increase perovskite solar cell performance and stability. J. Mater. Chem. A 2020, 8, 11728–11733.
Li, C.; Tscheuschner, S.; Paulus, F.; Hopkinson, P. E.; Kießling, J.; Köhler, A.; Vaynzof, Y.; Huettner, S. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 2016, 28, 2446–2454.
Guerrero, A.; Bou, A.; Matt, G.; Almora, O.; Heumüller, T.; Garcia-Belmonte, G.; Bisquert, J.; Hou, Y.; Brabec, C. Switching off hysteresis in perovskite solar cells by fine-tuning energy levels of extraction layers. Adv. Energy Mater. 2018, 8, 1703376.
Xia, J. M.; Liang, C.; Mei, S. L.; Gu, H.; He, B. C.; Zhang, Z. P.; Liu, T. H.; Wang, K. Y.; Wang, S. S.; Chen, S. et al. Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A 2021, 9, 2919–2927.
Wu, G. B.; Liang, R.; Zhang, Z. P.; Ge, M. Z.; Xing, G. C.; Sun, G. X. 2D hybrid halide perovskites: Structure, properties, and applications in solar cells. Small 2021, 17, 2103514.