AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Polymer-based hybrid materials and their application in personal health

Ran CaoYanhua ChengRuili WangJin WenLiping ZhuWeiqing KongXiaolan Qiao( )Meifang Zhu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
Show Author Information

Graphical Abstract

In this review, polymer-based hybrid materials work from women in our group, from theoretical modeling, microstructure visualization, and their personal health related application, including protection, monitoring, disease diagnosis, and bio-mimic therapy, are presented in honor of this “Women’s Special Issue”.

Abstract

With unprecedented properties and functions, polymer-based hybrid materials hold extremely important position in many fields. Here in this review, we summarized applications of polymer-based hybrid materials toward personal health. Firstly, theoretical calculation and in-situ visualization used to explore the interfacial interaction and formation of hybrid materials are introduced. Secondly, applications of polymer-based hybrid materials in personal health from proactive protection (anti-bacteria and harmful gas removal), health condition monitoring (breathing and sleep) to disease diagnosis (magnetic resonance imaging), and tissue therapy (dental restoration) are discussed. Additionally, aggregation-induced emission (AIE) organic molecules based optical sensors for personal security and polymer semiconductor for organic thin film transistors are simply discussed. Finally, we present the future tendency for preparing polymer-based hybrid materials that related with personal health.

References

[1]

Faustini, M.; Nicole, L.; Ruiz-Hitzky, E.; Sanchez, C. History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications. Adv. Funct. Mater. 2018, 28, 1704158.

[2]

Saveleva, M. S.; Eftekhari, K.; Abalymov, A.; Douglas, T. E. L.; Volodkin, D.; Parakhonskiy, B. V.; Skirtach, A. G. Hierarchy of hybrid materials-the place of inorganics-in-organics in it, their composition and applications. Front. Chem. 2019, 7, 179.

[3]

Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592.

[4]

Barthelat, F. Architectured materials in engineering and biology: Fabrication, structure, mechanics and performance. Int. Mater. Rev. 2015, 60, 413–430.

[5]

Liu, X. Y.; Wu, Y. X.; Zhao, X. C.; Wang, Z. K. Fabrication and applications of bioactive chitosan-based organic–inorganic hybrid materials: A review. Carbohydr. Polym. 2021, 267, 118179.

[6]

Doménech, A.; Doménech-Carbó, M. T.; del Río, M. S.; de Agredos Pascual, M. L. V.; Lima, E. Maya blue as a nanostructured polyfunctional hybrid organic–inorganic material: The need to change paradigms. New J. Chem. 2009, 33, 2371–2379.

[7]

Raue, M.; Wambach, M.; Glöggler, S.; Grefen, D.; Kaufmann, R.; Abetz, C.; Georgopanos, P.; Handge, U. A.; Mang, T.; Blümich, B. et al. Investigation of historical hard rubber ornaments of Charles Goodyear. Macromol. Chem. Phys. 2014, 215, 245–254.

[8]

Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic–inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753.

[9]

Qin, F. M.; Li, X. Y.; Wang, J. Y.; Jian, X. G. Preparation of silicone modified polyurethane/nano-SiO2 composite superhydrophobic coating. Acta. Polym. Sin. 2021, 52, 1165–1173.

[10]

Cao, R.; Chen, Z. J.; Chen, Y. W.; Idrees, K. B.; Hanna, S. L.; Wang, X. J.; Goetjen, T. A.; Sun, Q. J.; Islamoglu, T.; Farha, O. K. Benign integration of a Zn-azolate metal–organic framework onto textile fiber for ammonia capture. ACS Appl. Mater. Interfaces 2020, 12, 47747–47753.

[11]

Wang, X. P.; Meng, S.; Ma, W. J.; Pionteck, J.; Gnanaseelan, M.; Zhou, Z.; Sun, B.; Qin, Z. Y.; Zhu, M. F. Fabrication and gas sensing behavior of poly(3,4-ethylenedioxythiophene) coated polypropylene fiber with engineered interface. React. Funct. Polym. 2017, 112, 74–80.

[12]

Zhou, J. L.; Xiang, H. X.; Zabihi, F.; Yu, S. L.; Sun, B.; Zhu, M. F. Intriguing anti-superbug Cu2O@ZrP hybrid nanosheet with enhanced antibacterial performance and weak cytotoxicity. Nano Res. 2019, 12, 1453–1460.

[13]

Zhou, J. L.; Hu, Z. X.; Zabihi, F.; Chen, Z. G.; Zhu, M. F. Progress and perspective of antiviral protective material. Adv. Fiber Mater. 2020, 2, 123–139.

[14]

Zhai, G. X.; Zhou, J. L.; Xiang, H. X.; Innocent, M. T.; Yu, S. L.; Pan, W. N.; Li, L. L.; Zhu, M. F. Combustion forming hollow nanospheres as a ceramic fortress for flame-retardant fiber. Prog. Nat. Sci.: Mater. Int. 2021, 31, 239–247.

[15]

Zhang, J. Y.; Cheng, Y. H.; Xu, C. J.; Gao, M. Y.; Zhu, M. F.; Jiang, L. Hierarchical interface engineering for advanced nanocellulosic hybrid aerogels with high compressibility and multifunctionality. Adv. Funct. Mater. 2021, 31, 2009349.

[16]

Xia, W.; Fei, X.; Wang, Q. Q.; Lu, Y. Y.; Innocent, M. T.; Zhou, J. L.; Yu, S. L.; Xiang, H. X.; Zhu, M. F. Nano-hybridized form-stable ester@F-SiO2 phase change materials for melt-spun PA6 fibers engineered towards smart thermal management fabrics. Chem. Eng. J. 2021, 403, 126369.

[17]

Cao, R.; Zhao, S. Y.; Li, C. J. Free deformable nanofibers enhanced tribo-sensors for sleep and tremor monitoring. ACS Appl. Electron. Mater. 2019, 1, 2301–2307.

[18]

Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

[19]

Zhu, L. P.; Smith, P. P.; Boyes, S. G. pH-responsive polymers for imaging acidic biological environments in tumors. J. Polym. Sci. B.: Polym. Phys. 2013, 51, 1062–1067.

[20]

Liu, F. W.; Sun, B.; Jiang, X. Z.; Aldeyab, S. S.; Zhang, Q. H.; Zhu, M. F. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Dent. Mater. 2014, 30, 1358–1368.

[21]

Meng, Z. Q.; Wei, F.; Wang, R. H.; Xia, M. G.; Chen, Z. G.; Wang, H. P.; Zhu, M. F. NIR-laser-switched in vivo smart nanocapsules for synergic photothermal and chemotherapy of tumors. Adv. Mater. 2016, 28, 245–253.

[22]

Chen, H. Y.; Liu, H. M.; Wang, R. L.; Jiang, X. Z.; Zhu, M. F. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dent. Mater. 2021, 37, 961–971.

[23]

Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095–2100.

[24]

Chen, G. Y.; Wang, G.; Tan, X. R.; Hou, K.; Meng, Q. S.; Zhao, P.; Wang, S.; Zhang, J. Y.; Zhou, Z.; Chen, T. et al. Integrated dynamic wet spinning of core–sheath hydrogel fibers for optical-to-brain/tissue communications. Natl. Sci. Rev. 2021, 8, nwaa209.

[25]

Wen, J.; Tian, Z. Q.; Ma, J. Light- and electric-field-induced switching of thiolated azobenzene self-assembled monolayer. J. Phys. Chem. C 2013, 117, 19934–19944.

[26]

Zhou, J. L.; Fei, X.; Li, C. Q.; Yu, S. L.; Hu, Z. X.; Xiang, H. X.; Sun, B.; Zhu, M. F. Integrating nano-Cu2O@ZrP into in-situ polymerized polyethylene terephthalate (PET) fibers with enhanced mechanical properties and antibacterial activities. Polymers 2019, 11, 113.

[27]

Cheng, Y. H.; Wang, J. G.; Qiu, Z. J.; Zheng, X. Y.; Leung, N. L. C.; Lam, J. W. Y.; Tang, B. Z. Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv. Mater. 2017, 29, 1703900.

[28]

Li, Z. L.; Cai, B.; Yang, W. C.; Chen, C. L. Hierarchical nanomaterials assembled from peptoids and other sequence-defined synthetic polymers. Chem. Rev. 2021, 121, 14031–14087.

[29]

Kilina, S.; Kilin, D.; Tretiak, S. Light-driven and phonon-assisted dynamics in organic and semiconductor nanostructures. Chem. Rev. 2015, 115, 5929–5978.

[30]

Wen, J.; Li, W.; Chen, S.; Ma, J. Simulations of molecular self-assembled monolayers on surfaces: Packing structures, formation processes and functions tuned by intermolecular and interfacial interactions. Phys. Chem. Chem. Phys. 2016, 18, 22757–22771.

[31]

Mannige, R. V.; Haxton, T. K.; Proulx, C.; Robertson, E. J.; Battigelli, A.; Butterfoss, G. L.; Zuckermann, R. N.; Whitelam, S. Peptoid nanosheets exhibit a new secondary-structure motif. Nature 2015, 526, 415–420.

[32]

Edison, J. R.; Spencer, R. K.; Butterfoss, G. L.; Hudson, B. C.; Hochbaum, A. I.; Paravastu, A. K.; Zuckermann, R. N.; Whitelam, S. Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions. Proc. Natl. Acad. Sci. USA 2018, 115, 5647–5651.

[33]

Greer, D. R.; Stolberg, M. A.; Kundu, J.; Spencer, R. K.; Pascal, T.; Prendergast, D.; Balsara, N. P.; Zuckermann, R. N. Universal relationship between molecular structure and crystal structure in peptoid polymers and prevalence of the cis backbone conformation. J. Am. Chem. Soc. 2018, 140, 827–833.

[34]

Xuan, S. T.; Jiang, X.; Spencer, R. K.; Li, N. K.; Prendergast, D.; Balsara, N. P.; Zuckermann, R. N. Atomic-level engineering and imaging of polypeptoid crystal lattices. Proc. Natl. Acad. Sci. USA 2019, 116, 22491–22499.

[35]

Wen, J.; Ma, J. Modulating morphology of thiol-based monolayers in honeycomb hydrogen–bonded nanoporous templates on the Au (111) surface: Simulations with the modified force field. J. Phys. Chem. C 2012, 116, 8523–8534.

[36]

Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. Coarse-grained protein models and their applications. Chem. Rev. 2016, 116, 7898–7936.

[37]

Hore, M. J. A. Polymers on nanoparticles: Structure & dynamics. Soft Matter 2019, 15, 1120–1134.

[38]

Jablonka, K. M.; Ongari, D.; Moosavi, S. M.; Smit, B. Big-data science in porous materials: Materials genomics and machine learning. Chem. Rev. 2020, 120, 8066–8129.

[39]

Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555.

[40]

Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data-driven materials science: Status, challenges, and perspectives. Adv. Sci. 2019, 6, 1900808.

[41]

Gerrard, D. L.; Maddam, W. F. Polymer characterization by Raman spectroscopy. Appl. Spectrosc. Rev. 1986, 22, 251–334.

[42]

Panayiotou, C. Thermodynamic characterization of polymers. Polymer 2018, 136, 47–61.

[43]

Gao, M. Y.; Cheng, Y. H.; Zhang, J. Y.; Xu, C. J.; Yu, X. X.; Zhu, M. F. Molecular motions in polymer matrix for microenvironment sensing. Chem. Res. Chin. Univ. 2021, 37, 90–99.

[44]

Li, Y. Y.; Liu, S. J.; Han, T.; Zhang, H. K.; Chuah, C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Sparks fly when AIE meets with polymers. Mater. Chem. Front. 2019, 3, 2207–2220.

[45]

Han, T.; Gui, C.; Lam, J. W. Y.; Jiang, M. J.; Xie, N.; Kwok, R. T. K.; Tang, B. Z. High-contrast visualization and differentiation of microphase separation in polymer blends by fluorescent AIE probes. Macromolecules 2017, 50, 5807–5815.

[46]

Liu, S. J.; Cheng, Y. H.; Zhang, H. K.; Qiu, Z. J.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. In-situ monitoring of RAFT polymerization by tetraphenylethylene-containing agents with aggregation-induced emission characteristics. Angew Chem., Int. Ed. 2018, 57, 6274–6278.

[47]

Wang, Z. K.; Nie, J. Y.; Qin, W.; Hu, Q. L.; Tang, B. Z. Gelation process visualized by aggregation-induced emission fluorogens. Nat. Commun. 2016, 7, 12033.

[48]

Yang, Y.; Zhang, S.; Zhang, X. Q.; Gao, L. C.; Wei, Y.; Ji, Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun. 2019, 10, 3165.

[49]

Khorloo, M.; Cheng, Y. H.; Zhang, H. K.; Chen, M.; Sung, H. H. Y.; Williams, I. D.; Lam, J. W. Y.; Tang, B. Z. Polymorph selectivity of an AIE luminogen under nano-confinement to visualize polymer microstructures. Chem. Sci. 2020, 11, 997–1005.

[50]

Cheng, Y. H.; Liu, S. J.; Song, F. Y.; Khorloo, M.; Zhang, H. K.; Kwok, R. T. K.; Lam, J. W. Y.; He, Z. K.; Tang, B. Z. Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. Mater. Horiz. 2019, 6, 405–411.

[51]

Khorloo, M.; Yu, X. X.; Cheng, Y. H.; Zhang, H. K.; Yu, S. L.; Lam, J. W. Y.; Zhu, M. F.; Tang, B. Z. Enantiomeric switching of the circularly polarized luminescence processes in a hierarchical biomimetic system by film tilting. ACS Nano 2020, 15, 1397–1406.

[52]

Jiang, Y. M.; Cheng, Y. H.; Liu, S. J.; Zhang, H. K.; Zheng, X. Y.; Chen, M.; Khorloo, M.; Xiang, H. X.; Tang, B. Z.; Zhu, M. F. Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. Natl. Sci. Rev. 2021, 8, nwaa135.

[53]

Ma, K. K.; Li, P.; Xin, J. H.; Chen, Y. W.; Chen, Z. J.; Goswami, S.; Liu, X. F.; Kato, S.; Chen, H. Y.; Zhang, X. et al. Ultrastable mesoporous hydrogen–bonded organic framework-based fiber composites toward mustard gas detoxification. Cell Rep. Phys. Sci. 2020, 1, 10024.

[54]

Wang, Y.; Ma, K. K.; Bai, J. Q.; Xu, T.; Han, W. D.; Wang, C.; Chen, Z. X.; Kirlikovali, K. O.; Li, P.; Xiao, J. S. et al. Chemically engineered porous molecular coatings as reactive oxygen species generators and reservoirs for long-lasting self-cleaning textiles. Angew. Chem., Int. Ed. 2022, 61, e202115956.

[55]

Chen, Z. J.; Ma, K. K.; Mahle, J. J.; Wang, H.; Syed, Z. H.; Atilgan, A.; Chen, Y. W.; Xin, J. H.; Islamoglu, T.; Peterson, G. W. et al. Integration of metal–organic frameworks on protective layers for destruction of nerve agents under relevant conditions. J. Am. Chem. Soc. 2019, 141, 20016–20021.

[56]

Wang, J. J.; Wang, L. Y.; Feng, J. Y.; Tang, C. Q.; Sun, X. M.; Peng, H. S. Long-term in vivo monitoring of chemicals with fiber sensors. Adv. Fiber Mater. 2021, 3, 47–58.

[57]

Yang, Y. R.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491.

[58]

Cao, X. Y.; Halder, A.; Tang, Y. Y.; Hou, C. Y.; Wang, H. Z.; Duus, J. Ø.; Chi, Q. J. Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Mater. Chem. Front. 2018, 2, 1944–1986.

[59]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[60]

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

[61]

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

[62]

Cao, R.; Pu, X. J.; Du, X. Y.; Yang, W.; Wang, J. N.; Guo, H. Y.; Zhao, S. Y.; Yuan, Z. Q.; Zhang, C.; Li, C. J. et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 2018, 12, 5190–5196.

[63]

Liu, S. J.; Cheng, Y. H.; Li, Y. Y.; Chen, M.; Lam, J. W. Y.; Tang, B. Z. Manipulating solid-state intramolecular motion toward controlled fluorescence patterns. ACS Nano 2020, 14, 2090–2098.

[64]

Wang, S. H.; Xu, J.; Wang, W. C.; Wang, G. J. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S. M.; Feig, V. R.; Lopez, J. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88.

[65]

Lee, M. Y.; Lee, H. R.; Park, C. H.; Han, S. G.; Oh, J. H. Organic transistor-based chemical sensors for wearable bioelectronics. Acc. Chem. Res. 2018, 51, 2829–2838.

[66]

Wang, J.; Ye, D. K.; Meng, Q.; Di, C. A.; Zhu, D. B. Advances in organic transistor-based biosensors. Adv. Mater. Technol. 2020, 5, 2000218.

[67]

Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

[68]

Shi, W.; Guo, Y. L.; Liu, Y. Q. When flexible organic field-effect transistors meet biomimetics: A prospective view of the internet of things. Adv. Mater. 2020, 32, 1901493.

[69]

Qiao, X. L.; Yang, J.; Han, L. H.; Zhang, J. D.; Zhu, M. F. Synergistic effects of solvent vapor assisted spin-coating and thermal annealing on enhancing the carrier mobility of poly(3-hexylthiophene) field-effect transistors. Chin. J. Polym. Sci. 2021, 39, 849–855.

[70]

Qiao, X. L.; Wu, Q. H.; Wu, H. Z.; Zhang, J. D.; Li, H. X. Bithienopyrroledione-based copolymers, versatile semiconductors for balanced ambipolar thin-film transistors and organic solar cells with Voc > 1 V. Adv. Funct. Mater. 2017, 27, 1604286.

[71]

Qiao, X. L.; Wu, Q. H.; Wu, H. Z.; Wang, D. L.; Li, H. X. High performance thin film transistors based on bi-thieno[3,4-c]pyrrole-4,6-dione-containing copolymers: Tuning the face-on and edge-on packing orientations. Polym. Chem. 2016, 7, 807–815.

[72]

Tang, L. J.; He, P.; Qiao, X. L.; Qian, Q.; Li, H. X. Phase separation and electrical performance of bithienopyrroledione polymer semiconductors embedded in insulating polymers. Mater. Chem. Front. 2017, 1, 2265–2270.

[73]

Fu, C. K.; Yu, Y.; Xu, X.; Wang, Q. Y.; Chang, Y. X.; Zhang, C.; Zhao, J. C.; Peng, H.; Whittaker, A. K. Functional polymers as metal-free magnetic resonance imaging contrast agents. Prog. Polym. Sci. 2020, 108, 101286.

[74]

Rowe, M. D.; Chang, C. C.; Thamm, D. H.; Kraft, S. L.; Harmon, J. F. Jr.; Vogt, A. P.; Sumerlin, B. S.; Boyes, S. G. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 2009, 25, 9487–9499.

[75]

Huang, X. M.; Hu, J. M.; Li, Y. H.; Xin, F. Y.; Qiao, R. R.; Davis, T. P. Engineering organic/inorganic nanohybrids through RAFT polymerization for biomedical applications. Biomacromolecules 2019, 20, 4243–4257.

[76]

Zhu, L. P.; Yang, Y.; Farquhar, K.; Wang, J. J.; Tian, C. X.; Ranville, J.; Boyes, S. G. Surface modification of Gd nanoparticles with pH-responsive block copolymers for use as smart MRI contrast agents. ACS Appl. Mater. Interfaces 2016, 8, 5040–5050.

[77]

Zhu, L. P.; Powell, S.; Boyes, S. G. Synthesis of tertiary amine-based pH-responsive polymers by RAFT polymerization. J. Polym. Sci. A: Polym. Chem. 2015, 53, 1010–1022.

[78]

Tian, C. X.; Zhu, L. P.; Lin, F.; Boyes, S. G. Poly(acrylic acid) bridged gadolinium metal–organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl. Mater. Interfaces 2015, 7, 17765–17775.

[79]

Li, D.; Yang, J.; Wen, S. H.; Shen, M. W.; Zheng, L. F.; Zhang, G. X.; Shi, X. Y. Targeted CT/MR dual mode imaging of human hepatocellular carcinoma using lactobionic acid-modified polyethyleneimine-entrapped gold nanoparticles. J. Mater. Chem. B 2017, 5, 2395–2401.

[80]

Xiao, W. C.; Legros, P.; Chevallier, P.; Lagueux, J.; Oh, J. K.; Fortin, M. A. Superparamagnetic iron oxide nanoparticles stabilized with multidentate block copolymers for optimal vascular contrast in T1-weighted magnetic resonance imaging. ACS Appl. Nano Mater. 2018, 1, 894–907.

[81]

Yoo, E.; Cheng, H. A.; Nardacci, L. E.; Beaman, D. J.; Drinnan, C. T.; Lee, C.; Fishbein, K. W.; Spencer, R. G.; Fisher, O. Z.; Doiron, A. L. Activatable interpolymer complex-superparamagnetic iron oxide nanoparticles as magnetic resonance contrast agents sensitive to oxidative stress. Colloids Surf. B: Biointerfaces 2017, 158, 578–588.

[82]

Fernández-Álvarez, F.; Caro, C.; García-García, G.; García-Martín, M. L.; Arias, J. L. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J. Mater. Chem. B 2021, 9, 4963–4980.

[83]

Ma, D.; Chen, J. W.; Luo, Y.; Wang, H.; Shi, X. Y. Zwitterion-coated ultrasmall iron oxide nanoparticles for enhanced T1-weighted magnetic resonance imaging applications. J. Mater. Chem. B 2017, 5, 7267–7273.

[84]

Mauri, M.; Collico, V.; Morelli, L.; Das, P.; García, I.; Avila, J. P.; Bellini, M.; Rotem, R.; Truffi, M.; Corsi, F. et al. MnO nanoparticles embedded in functional polymers as T1 contrast agents for magnetic resonance imaging. ACS Appl. Nano Mater. 2020, 3, 3787–3797.

[85]

Wang, P.; Xu, X. Y.; Wang, Y.; Zhou, B. Q.; Qu, J.; Li, J.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Zwitterionic polydopamine-coated manganese oxide nanoparticles with ultrahigh longitudinal relaxivity for tumor-targeted MR imaging. Langmuir 2019, 35, 4336–4341.

[86]

Feng, K. Z.; Zhang, J.; Dong, H. J.; Li, Z. X.; Gu, N.; Ma, M.; Zhang, Y. Prussian blue nanoparticles having various sizes and crystallinities for multienzyme catalysis and magnetic resonance imaging. ACS Appl. Nano Mater. 2021, 4, 5176–5186.

[87]

Ahmad, M. Y.; Ahmad, W.; Yue, H.; Ho, S. L.; Park, J. A.; Jung, K. H.; Cha, H.; Marasini, S.; Ghazanfari, A.; Liu, S. W. et al. In vivo positive magnetic resonance imaging applications of poly(methyl vinyl ether-alt-maleic acid)-coated ultra-small paramagnetic gadolinium oxide nanoparticles. Molecules 2020, 25, 1159.

[88]

Jang, Y. J.; Liu, S. W.; Yue, H.; Park, J. A.; Cha, H.; Ho, S. L.; Marasini, S.; Ghazanfari, A.; Ahmad, M. Y.; Miao, X. et al. Hydrophilic biocompatible poly(acrylic acid-co-maleic acid) polymer as a surface-coating ligand of ultrasmall Gd2O3 nanoparticles to obtain a high r1 value and T1 MR images. Diagnostics 2021, 11, 2.

[89]
Bhat, S.; Uthappa, U. T.; Altalhi, T.; Jung, H. Y.; Kurkuri, M. D. Functionalized porous hydroxyapatite scaffolds for tissue engineering applications: A focused review. ACS Biomater. Sci. Eng., in press, https://doi.org/10.1021/acsbiomaterials.1c00438.
[90]

Welch, K.; Cai, Y. L.; Engqvist, H.; Strømme, M. Dental adhesives with bioactive and on-demand bactericidal properties. Dent. Mater. 2010, 26, 491–499.

[91]

Sharma, K.; Sharma, S.; Thapa, S.; Bhagat, M.; Kumar, V.; Sharma, V. Nanohydroxyapatite-, gelatin-, and acrylic acid-based novel dental restorative material. ACS Omega 2020, 5, 27886–27895.

[92]

Chen, L.; Yu, Q. S.; Wang, Y.; Li, H. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dent. Mater. 2011, 27, 1187–1195.

[93]

Liu, F. W.; Jiang, X. Z.; Bao, S.; Wang, R. L.; Sun, B.; Zhu, M. F. Effect of hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity of the dental resin composite. Mater. Sci. Eng. C 2015, 53, 150–155.

[94]

Liu, F. W.; Jiang, X. Z.; Zhang, Q. H.; Zhu, M. F. Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Compos. Sci. Technol. 2014, 101, 86–93.

[95]

Liu, F. W.; Wang, R. L.; Cheng, Y. H.; Jiang, X. Z.; Zhang, Q. H.; Zhu, M. F. Polymer grafted hydroxyapatite whisker as a filler for dental composite resin with enhanced physical and mechanical properties. Mater. Sci. Eng. C 2013, 33, 4994–5000.

[96]

Qian, L.; Wang, R. L.; Li, W.; Chen, H. Y.; Jiang, X. Z.; Zhu, M. F. The synthesis of urchin-like serried hydroxyapatite (USHA) and its reinforcing effect for dental resin composites. Macromol. Mater. Eng. 2019, 304, 1800738.

[97]

Chen, H. Y.; Wang, R. L.; Qian, L.; Liu, H. M.; Wang, J. X.; Zhu, M. F. Surface modification of urchin-like serried hydroxyapatite with sol–gel method and its application in dental composites. Compos. Part B.: Eng. 2020, 182, 107621.

[98]

Chen, H. Y.; Wang, J. J.; Wang, R. L.; Zhu, M. F. Synthesis of fluorinated urchin-like serried hydroxyapatite with improved water sorption-solubility and bioactivity for dental composites. Chem. Res. Chin. Univ. 2021, 37, 1092–1100.

[99]

Liu, Y. Y.; Fan, Q.; Huo, Y.; Liu, C.; Li, B.; Li, Y. M. Construction of a mesoporous polydopamine@GO/cellulose nanofibril composite hydrogel with an encapsulation structure for controllable drug release and toxicity shielding. ACS Appl. Mater. Interfaces 2020, 12, 57410–57420.

[100]

Xia, M. G.; Wu, W. J.; Liu, F. W.; Theato, P.; Zhu, M. F. Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay. Eur. Polym. J. 2015, 69, 472–482.

[101]

Kong, W. Q.; Wang, C. W.; Jia, C.; Kuang, Y. D.; Pastel, G.; Chen, C. J.; Chen, G. G.; He, S. M.; Huang, H.; Zhang, J. H. et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 2018, 30, 1801934.

[102]

Wang, X. F.; Fang, J.; Zhu, W. W.; Zhong, C. X.; Ye, D. D.; Zhu, M. Y.; Lu, X.; Zhao, Y. S.; Ren, F. Z. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair. Adv. Funct. Mater. 2021, 31, 2010068.

[103]

Hou, K.; Wang, H. Y.; Lin, Y. Y.; Chen, S. H.; Yang, S. Y.; Cheng, Y. H.; Hsiao, B. S.; Zhu, M. F. Large scale production of continuous hydrogel fibers with anisotropic swelling behavior by dynamic-crosslinking-spinning. Macromol. Rapid Commun. 2016, 37, 1795–1801.

[104]

Wei, P. L.; Hou, K.; Chen, T.; Chen, G. Y.; Mugaanire, I. T.; Zhu, M. F. Reactive spinning to achieve nanocomposite gel fibers: From monomer to fiber dynamically with enhanced anisotropy. Mater. Horiz. 2020, 7, 811–819.

[105]

Song, J. C.; Chen, S.; Sun, L. J.; Guo, Y. F.; Zhang, L. Z.; Wang, S. L.; Xuan, H. X.; Guan, Q. B.; You, Z. W. Mechanically and electronically robust transparent organohydrogel fibers. Adv. Mater. 2020, 32, 1906994.

[106]

Chen, T.; Qiao, X. L.; Wei, P. L.; Chen, G. Y.; Mugaanire, I. T.; Hou, K.; Zhu, M. F. Tough gel-fibers as strain sensors based on strain-optics conversion induced by anisotropic structural evolution. Chem. Mater. 2020, 32, 9675–9687.

[107]

Wei, P. L.; Chen, T.; Chen, G. Y.; Liu, H. M.; Mugaanire, I. T.; Hou, K.; Zhu, M. F. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties. ACS Appl. Mater. Interfaces 2020, 12, 3068–3079.

[108]

Sun, L. J.; Huang, H. F.; Ding, Q. Y.; Guo, Y. F.; Sun, W.; Wu, Z. C.; Qin, M. L.; Guan, Q. B.; You, Z. W. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv. Fiber Mater. 2022, 4, 98–107.

[109]

Sun, L. J.; Chen, S.; Guo, Y. F.; Song, J. C.; Zhang, L. Z.; Xiao, L. J.; Guan, Q. B.; You, Z. W. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019, 63, 103847.

[110]

Nudelman, F.; Sommerdijk, N. A. J. M. Biomineralization as an inspiration for materials chemistry. Angew. Chem., Int. Ed. 2012, 51, 6582–6596.

Nano Research
Pages 3956-3975
Cite this article:
Cao R, Cheng Y, Wang R, et al. Polymer-based hybrid materials and their application in personal health. Nano Research, 2023, 16(3): 3956-3975. https://doi.org/10.1007/s12274-022-4775-7
Topics:
Part of a topical collection:

1078

Views

6

Crossref

15

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 29 April 2022
Revised: 28 June 2022
Accepted: 14 July 2022
Published: 30 August 2022
© Tsinghua University Press 2022
Return