AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin layered double hydroxide nanosheets prepared by original precursor method for photoelectrochemical photodetectors

Yu Wang1Fulai Zhao1Yiyu Feng1,2,3,4Wei Feng1,2,3 ( )
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China
Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300350, China
Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
Show Author Information

Graphical Abstract

Two novel ultrathin layered double hydroxides (LDHs, Ca-In and Ca-Al LDH) nanosheets are prepared through the original precursor method, and demonstrate a uniform thickness distribution, micron-level lateral sizes, and moderate bandgap, broad light absorption range, hydrophilicity and stability, thus, Ca-In and Ca-Al LDH nanosheets are applied for the first time in photoelectrochemical photodetectors, realizing a wide range of light detection from ultraviolet to visible light. Moreover, the fabricated photodetectors exhibit excellent cycle stability, and the average photocurrent density shows no reduction after 70 days.

Abstract

Layered double hydroxides (LDHs) are widely used owing to their unique alternating anionic and cationic layered two-dimensional (2D) structures. However, studies on the preparation of 2D LDH nanosheets with uniform thickness and their photodetectors are limited. In this study, two novel ultrathin LDH (Ca-In and Ca-Al LDH) nanosheets are peeled off from precursor bimetallic phosphides through the original precursor method. Both Ca-In and Ca-Al LDH nanosheets demonstrate a uniform thickness distribution with an average thickness of 3–4 nm, micron-level lateral sizes, and moderate bandgap. Owing to its broad light absorption range, hydrophilicity, and stability, Ca-In and Ca-Al LDH nanosheets are applied for the first time in photoelectrochemical photodetectors, realizing a wide range of light detection from ultraviolet (365 nm) to visible light (635 nm). Moreover, the fabricated photodetectors exhibit excellent cycle stability, and the average photocurrent density shows no reduction after 70 days. Therefore, this study provides an effective method to prepare 2D Ca-In and Ca-Al LDH nanosheets with uniform thickness and photoelectric application prospects.

Electronic Supplementary Material

Download File(s)
12274_2022_4778_MOESM1_ESM.pdf (1.3 MB)

References

1

Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136–143.

2

Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

3

Geng, F. X.; Xin, H.; Matsushita, Y.; Ma, R. Z.; Tanaka, M.; Izumi, F.; Iyi, N.; Sasaki, T. New layered rare-earth hydroxides with anion-exchange properties. Chem.—Eur. J. 2008, 14, 9255–9260.

4

Jing, C.; Dong, B. Q.; Zhang, Y. X. Chemical modifications of layered double hydroxides in the supercapacitor. Energy Environ. Mater. 2020, 3, 346–379.

5

Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

6

Goh, K. H.; Lim, T. T.; Dong, Z. L. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368.

7

Pang, H. W.; Wu, Y. H.; Wang, X. X.; Hu, B. W.; Wang, X. K. Recent advances in composites of graphene and layered double hydroxides for water remediation: A review. Chem.—Asian J. 2019, 14, 2542–2552.

8

Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

9

Huang, J. W.; Dong, N. N.; McEvoy, N.; Wang, L.; Coileáin, C. Ó.; Wang, H. Q.; Cullen, C. P.; Chen, C. D.; Zhang, S. F.; Zhang, L. et al. Surface-state assisted carrier recombination and optical nonlinearities in bulk to 2D nonlayered PtS. ACS Nano 2019, 13, 13390–13402.

10

Wang, Y.; Wang, L.; Zhang, X.; Liang, X. J.; Feng, Y. Y.; Feng, W. Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today 2021, 37, 101059.

11

Qiao, H.; Huang, Z. Y.; Ren, X. H.; Liu, S. H.; Zhang, Y. P.; Qi, X.; Zhang, H. Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 2019, 8, 1900765.

12

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

13

Huang, W. C.; Xie, Z. J.; Fan, T. J.; Li, J. G.; Wang, Y. Z.; Wu, L. M.; Ma, D. T.; Li, Z. J.; Ge, Y. Q.; Huang, Z. N. et al. Black-phosphorus-analogue tin monosulfide: An emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J. Mater. Chem. C 2018, 6, 9582–9593.

14

Ren, X. H.; Li, Z. J.; Huang, Z. Y.; Sang, D.; Qiao, H.; Qi, X.; Li, J. Q.; Zhong, J. X.; Zhang, H. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector. Adv. Funct. Mater. 2017, 27, 1606834.

15

Xing, C. Y.; Huang, W. C.; Xie, Z. J.; Zhao, J. L.; Ma, D. T.; Fan, T. J.; Liang, W. Y.; Ge, Y. Q.; Dong, B. Q.; Li, J. Q. et al. Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV–Vis Photodetector. ACS Photonics 2018, 5, 621–629.

16

Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Two-dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology 2019, 30, 114002.

17

Li, Z. J.; Qiao, H.; Guo, Z. N.; Ren, X. H.; Huang, Z. Y.; Qi, X.; Dhanabalan, S. C.; Ponraj, J. S.; Zhang, D.; Li, J. Q. et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered inse nanosheets with enhanced stability. Adv. Funct. Mater. 2018, 28, 1705237.

18

Gao, L. F.; Chen, H. L.; Wang, R.; Wei, S. R.; Kuklin, A. V.; Mei, S.; Zhang, F.; Zhang, Y.; Jiang, X. T.; Luo, Z. Q. et al. Ultra-small 2D PbS nanoplatelets: Liquid-phase exfoliation and emerging applications for photo-electrochemical photodetectors. Small 2021, 17, 2005913.

19

Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

20

Zheng, S. F.; Lu, J.; Duan, X. Novel visible-light photodetector based on two-dimensional confined electron donor-acceptor co-assembled layered double hydroxide ultrathin films. ACS Omega 2016, 1, 1239–1246.

21

Jeon, C. W.; Lee, S. S.; Park, I. K. Flexible visible-blind ultraviolet photodetectors based on ZnAl-layered double hydroxide nanosheet scroll. ACS Appl. Mater. Interfaces 2019, 11, 35138–35145.

22

Nguyen, T. K. N.; Dumait, N.; Grasset, F.; Cordier, S.; Berthebaud, D.; Matsui, Y.; Ohashi, N.; Uchikoshi, T. Zn-Al layered double hydroxide film functionalized by a luminescent octahedral molybdenum cluster: Ultraviolet–visible photoconductivity response. ACS Appl. Mater. Interfaces 2020, 12, 40495–40509.

23

Bing, W. H.; Zheng, L.; He, S.; Rao, D. M.; Xu, M.; Zheng, L. R.; Wang, B.; Wang, Y. D.; Wei, M. Insights on active sites of CaAl-hydrotalcite as a high-performance solid base catalyst toward aldol condensation. ACS Catal. 2017, 8, 656–664.

24

Newman, S. P.; Jones, W.; O'Connor, P.; Stamires, D. N. Synthesis of the 3R2 polytype of a hydrotalcite-like mineral. J. Mater. Chem. 2002, 12, 153–155.

25

Steiner, S.; Lothenbach, B.; Proske, T.; Borgschulte, A.; Winnefeld, F. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cement Concrete Res. 2020, 135, 106116.

26

Nayak, S.; Mohapatra, L.; Parida, K. Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 2015, 3, 18622–18635.

27

Xia, S. J.; Liu, F. X.; Ni, Z. M.; Shi, W.; Xue, J. L.; Qian, P. P. Ti-based layered double hydroxides: Efficient photocatalysts for azo dyes degradation under visible light. Appl. Catal. B: Environ. 2014, 144, 570–579.

28

Yang, Q.; Wang, S. N.; Chen, F.; Luo, K.; Sun, J.; Gong, C.; Yao, F. B.; Wang, X. L.; Wu, J. W.; Li, X. M. et al. Enhanced visible-light-driven photocatalytic removal of refractory pollutants by Zn/Fe mixed metal oxide derived from layered double hydroxide. Catal. Commun. 2017, 99, 15–19.

29

Zhang, P. P.; Zhao, F. L.; Long, P.; Wang, Y.; Yue, Y. C.; Liu, X. Y.; Feng, Y. Y.; Li, R. J.; Hu, W. P.; Li, Y. et al. Sonication-assisted liquid-phase exfoliated α-GeTe: A two-dimensional material with high Fe3+ sensitivity. Nanoscale 2018, 10, 15989–15997.

30

Pal, M.; Pal, U.; Jiménez, J. M. G. Y.; Pérez-Rodríguez, F. Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 2012, 7, 1.

31

Gong, H.; Xue, H. R.; Gao, B.; Li, Y.; Fan, X. L.; Zhang, S. T.; Wang, T.; He, J. P. Introduction of photo electrochemical water-oxidation mechanism into hybrid lithium-oxygen batteries. Energy Storage Mater. 2020, 31, 11–19.

32

Li, Y. Y.; Sun, B. W.; Lin, H. F.; Ruan, Q. Q.; Geng, Y. L.; Liu, J.; Wang, H.; Yang, Y.; Wang, L.; Tam, K. C. Efficient visible-light induced H2 evolution from T-CdxZn1−xS/defective MoS2 nano-hybrid with both bulk twinning homojunctions and interfacial heterostructures. Appl. Catal. B: Environ. 2020, 267, 118702.

33

Yang, X. X.; Qu, L. H.; Gao, F.; Hu, Y. X.; Yu, H.; Wang, Y. X.; Cui, M. Q.; Zhang, Y. X.; Fu, Z. D.; Huang, Y. W. et al. High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 7175–7183.

34

Zhang, Y.; Zhang, F.; Xu, Y. G.; Huang, W. C.; Wu, L. M.; Zhang, Y. P.; Zhang, X. W.; Zhang, H. Self-healable black phosphorus photodetectors. Adv. Funct. Mater. 2019, 29, 1906610.

35

Liu, N. N.; Qiao, H.; Xu, K.; Xi, Y. L.; Ren, L.; Cheng, N. Y.; Cui, D. D.; Qi, X.; Xu, X.; Hao, W. C. et al. Hydrogen terminated germanene for a robust self-powered flexible photoelectrochemical photodetector. Small 2020, 16, 2000283.

36

Huang, W. C.; Xing, C. Y.; Wang, Y. Z.; Li, Z. J.; Wu, L. M.; Ma, D. T.; Dai, X. Y.; Xiang, Y. J.; Li, J. Q.; Fan, D. Y. et al. Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 2018, 10, 2404–2412.

37

Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

Nano Research
Pages 9392-9401
Cite this article:
Wang Y, Zhao F, Feng Y, et al. Ultrathin layered double hydroxide nanosheets prepared by original precursor method for photoelectrochemical photodetectors. Nano Research, 2022, 15(10): 9392-9401. https://doi.org/10.1007/s12274-022-4778-4
Topics:

1187

Views

12

Crossref

11

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 20 June 2022
Revised: 13 July 2022
Accepted: 14 July 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return