AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

One-dimensional metallic, magnetic, and dielectric nanomaterials-based composites for electromagnetic wave interference shielding

Ya ChengWendong ZhuXiaofeng Lu( )Ce Wang( )
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
Show Author Information

Graphical Abstract

In this review, we focus on the electromagnetic wave interference (EMI) shielding membrane- or aerogel/sponge-like composite, including one-dimensional (1D) metallic, magnetic, and dielectric nanomaterials as EMI fillers. Correspondingly, the fabricated routes, shielding performance, and attenuated mechanism of 1D metallic, magnetic, and dielectric filler-based composites are summarized.

Abstract

The excrescent electromagnetic (EM) radiation exposure in the air threatens human health and electronic equipment due to the abuse of EM waves in wireless telecommunication technology and electronic applications. Consequently, electromagnetic interference (EMI) shielding materials are provided to solve the EM waves pollution problem. In particular, the appearance of one-dimensional (1D) metallic, magnetic, and dielectric nanofillers will extremely reduce the density of EMI composite and enhance EMI protection performance because they can easily assemble to form complete two-dimensional (2D) or three-dimensional (3D) EMI network based on their high aspect ratio, large specific surface area, and additional attenuated sites. This review focuses on the EMI shielding composites with 1D metallic, magnetic, and dielectric nanofillers, which could be constructed in the final form of membrane- or aerogel/sponge-like shielding materials. According to the structural features, 1D metallic, magnetic, and dielectric nanofillers are classified into nanowires, nanorods, nanospindles, nanochains, nanofibers, nanotubes, nanorings, nanocoils, and quasi-one-dimensional (1D) van der Waals materials. Accordingly, the fabricated routes, shielding performances, and EM waves attenuation mechanism of the 1D metallic, magnetic, and dielectric nanofiller-based composites are summarized. It is found that the dominant shielding mechanism of most of the 1D metal-based EMI composites is reflection loss, while that of 1D magnetic and dielectric nanomaterials-based EMI composites is absorption loss caused by interfacial polarization, natural resonance, eddy current, and multiple scattering. Finally, the challenges and prospects of 1D nanofiller-based composites with a tunable architecture and composition are put forward, aiming to give a guideline for the next generation of high-performance EMI shielding materials.

References

1

Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

2

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

3

Deng, J. S.; Bai, Z. Y.; Zhao, B.; Guo, X. Q.; Zhao, H. H.; Xu, H.; Park, C. B. Opportunities and challenges in microwave absorption of nickel-carbon composites. Phys. Chem. Chem. Phys. 2021, 23, 20795–20834.

4

Wang, X. Y.; Liao, S. Y.; Wan, Y. J.; Zhu, P. L.; Hu, Y. G.; Zhao, T.; Sun, R.; Wong, C. P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72.

5

Dai, S. W.; Gu, Y. L.; Zhao, L.; Zhang, W.; Gao, C. H.; Wu, Y. X.; Shen, S. C.; Zhang, C.; Kong, T. T.; Li, Y. T. et al. Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor. Compos. Part B Eng. 2021, 225, 109243.

6

Mei, X. K.; Lu, L. S.; Xie, Y. X.; Wang, W. T.; Tang, Y.; Teh, K. S. An ultra-thin carbon-fabric/graphene/poly(vinylidene fluoride) film for enhanced electromagnetic interference shielding. Nanoscale 2019, 11, 13587–13599.

7

Zeng, S. P.; Li, X. P.; Li, M. J.; Zheng, J. J.; E, S. J.; Yang, W. J.; Zhao, B.; Guo, X. Q.; Zhang, R. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 2019, 155, 34–43.

8

Jiang, D. W.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z. C.; Shao, Q.; Wang, C.; Liu, H.; Lu, N. et al. Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 2019, 59, 280–337.

9

Gao, B.; Qiao, L.; Wang, J. B.; Liu, Q. F.; Li, F. S.; Feng, J.; Xue, D. S. Microwave absorption properties of the Ni nanowires composite. J. Phys. D:Appl. Phys. 2008, 41, 235005.

10

Ji, H.; Zhao, R.; Zhang, N.; Jin, C. X.; Lu, X. F.; Wang, C. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Mater. 2018, 10, 749–760.

11

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling Nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

12

Huang, J. Y.; Zhao, M.; Hao, Y.; Li, D. W.; Feng, J. D.; Huang, F. L.; Wei, Q. F. Flexible, stretchable, and multifunctional electrospun polyurethane mats with 0D–1D–2D ternary nanocomposite-based conductive networks. Adv. Electron. Mater. 2021, 7, 2000840.

13

Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

14

Wu, M.; Darboe, A. K.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Wu, G. L.; Zhong, W. Optimization, selective and efficient production of CNTs/CoxFe3−xO4 core–shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 2020, 8, 11936–11949.

15

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

16

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk-shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

17

Long, L.; Yang, E. Q.; Qi, X. S.; Xie, R.; Bai, Z. C.; Qin, S. J.; Deng, C. Y.; Zhong, W. Positive and reverse core/shell structure CoxFe3−xO4/MoS2 and MoS2/CoxFe3−xO4 nanocomposites: Selective production and outstanding electromagnetic absorption comprehensive performance. ACS Sustainable Chem. Eng. 2020, 8, 613–623.

18

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of Core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

19

Wei, H. Q.; Cauchy, X.; Navas, I. O.; Abderrafai, Y.; Chizari, K.; Sundararaj, U.; Liu, Y. J.; Leng, J. S.; Therriault, D. Direct 3D printing of hybrid nanofiber-based nanocomposites for highly conductive and shape memory applications. ACS Appl. Mater. Interfaces 2019, 11, 24523–24532.

20

Wang, L. C.; Xie, Z. X.; Zhan, Y. H.; Hao, X. H.; Meng, Y. Y.; Wei, S.; Chen, Z. M.; Xia, H. S. Robust, flexible, and high-performance electromagnetic interference shielding films with long-lasting service. RSC Adv. 2021, 11, 18476–18482.

21

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

22

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

23

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

24

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

25

Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M. K.; Hong, S. M.; Han, M.; Gogotsi, Y.; Koo, C. M. Ultralight and mechanically robust Ti3C2Tx hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054.

26

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

27

Weir, W. B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 1974, 62, 33–36.

28

Mei, N.; Wang, X. Y.; Wang, X.; Li, H. F.; Wei, M. H.; Liu, J.; Shi, S. Research on shielding effectiveness calculation method of electromagnetic shielding materials. SSP 2020, 304, 137–141.

29

Hwang, U.; Kim, J.; Seol, M.; Lee, B.; Park, I. K.; Suhr, J.; Nam, J. D. Quantitative interpretation of electromagnetic interference shielding efficiency: Is it really a wave absorber or a reflector? ACS Omega 2022, 7, 4135–4139.

30

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

31

Zhan, Y. H.; Hao, X. H.; Wang, L. C.; Jiang, X. C.; Cheng, Y.; Wang, C. Z.; Meng, Y. Y.; Xia, H. S.; Chen, Z. M. Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanoparticles for ultrahigh electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 14623–14633.

32

Jia, L. C.; Zhang, G.; Xu, L.; Sun, W. J.; Zhong, G. J.; Lei, J.; Yan, D. X.; Li, Z. M. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2019, 11, 1680–1688.

33

Liu, L. X.; Chen, W.; Zhang, H. B.; Wang, Q. W.; Guan, F. L.; Yu, Z. Z. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197.

34

Xia, S. H.; Wei, C. L.; Tang, J. C.; Yan, J. H. Tensile stress-gated electromagnetic interference shielding fabrics with real-time adjustable shielding efficiency. ACS Sustainable Chem. Eng. 2021, 9, 13999–14005.

35

Liang, L. Y.; Han, G. J.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y. Z.; Ma, J. M.; Wang, Y. M.; Zhang, R.; Liu, C. T. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409.

36

Wang, Z. X.; Jiao, B.; Qing, Y.; Nan, H. Y.; Huang, L. Q.; Wei, W.; Peng, Y.; Yuan, F.; Dong, H.; Hou, X. et al. Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2020, 12, 2826–2834.

37

Zhu, Y. F.; Zhang, L.; Natsuki, T.; Fu, Y. Q.; Ni, Q. Q. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. ACS Appl. Mater. Interfaces 2012, 4, 2101–2106.

38

Cheng, Y.; Meng, W.; Li, Z. Y.; Zhao, H. Q.; Cao, J. M.; Du, Y. W.; Ji, G. B. Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires. J. Mater. Chem. C 2017, 5, 8981–8987.

39

Han, Y.; Liu, Y. X.; Han, L.; Lin, J.; Jin, P. High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 2017, 115, 34–42.

40

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

41

Zhou, B.; Su, M. J.; Yang, D. Z.; Han, G. J.; Feng, Y. Z.; Wang, B.; Ma, J. L.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance. ACS Appl. Mater. Interfaces 2020, 12, 40859–40869.

42

Yang, S.; Wang, Y. Y.; Song, Y. N.; Jia, L. C.; Zhong, G. J.; Xu, L.; Yan, D. X.; Lei, J.; Li, Z. M. Ultrathin, flexible and sandwich-structured PHBV/silver nanowire films for high-efficiency electromagnetic interference shielding. J. Mater. Chem. C 2021, 9, 3307–3315.

43

Kim, D. H.; Kim, Y.; Kim, J. W. Transparent and flexible film for shielding electromagnetic interference. Mater. Des. 2016, 89, 703–707.

44

Zhang, X.; Zhong, Y. L.; Yan, Y. Electrical, mechanical, and electromagnetic shielding properties of silver nanowire-based transparent conductive films. Phys. Status Solidi A 2018, 215, 1800014.

45

Zeraati, A. S.; Anjaneyalu, A. M.; Pawar, S. P.; Abouelmagd, A.; Sundararaj, U. Effect of secondary filler properties and geometry on the electrical, dielectric, and electromagnetic interference shielding properties of carbon nanotubes/polyvinylidene fluoride nanocomposites. Polym. Eng. Sci. 2021, 61, 959–970.

46

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

47

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)–(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heating performances. Nano Res. 2022, 15, 4747–4755.

48

Hernando, A.; Lopez-Dominguez, V.; Ricciardi, E.; Osiak, K.; Marin, P. Tuned scattering of electromagnetic waves by a finite length ferromagnetic microwire. IEEE Trans. Antennas Propag. 2016, 64, 1112–1115.

49

Fei, Y.; Liang, M.; Zhou, T.; Chen, Y.; Zou, H. W. Unique carbon nanofiber@ Co/C aerogel derived bacterial cellulose embedded Zeolitic Imidazolate frameworks for high-performance electromagnetic interference shielding. Carbon 2020, 167, 575–584.

50

Bhardwaj, P.; Kaushik, S.; Gairola, P.; Gairola, S. P. Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for suppression of electromagnetic radiation. SN Appl. Sci. 2019, 1, 113.

51

Bayat, M.; Yang, H.; Ko, F. Effect of iron oxide nanoparticle size on electromagnetic properties of composite nanofibers. J. Compos. Mater. 2018, 52, 1723–1736.

52

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

53

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

54

Kim, H. R.; Kim, B. S.; Kim, I. S. Fabrication and EMI shielding effectiveness of Ag-decorated highly porous poly(vinyl alcohol)/Fe2O3 nanofibrous composites. Mater. Chem. Phys. 2012, 135, 1024–1029.

55

Jang, D. H.; Song, H.; Lee, Y. I.; Lee, K. J.; Kim, K. H.; Oh, S. T.; Lee, S. K.; Choa, Y. H. Preparation and characterization of TiO2 coated Fe nanofibers for electromagnetic wave absorber. J. Nanosci. Nanotechnol. 2011, 11, 763–767.

56

Gupta, S.; Chang, C. N.; Lai, C. H.; Tai, N. H. Hybrid composite mats composed of amorphous carbon, zinc oxide nanorods and nickel zinc ferrite for tunable electromagnetic interference shielding. Compos. Part B Eng. 2019, 164, 447–457.

57

Al-Asbahi, B. A.; Qaid, S. M. H.; El-Shamy, A. G. Flexible conductive nanocomposite PEDOT: PSS/Te nanorod films for superior electromagnetic interference (EMI) shielding: A new exploration. J. Ind. Eng. Chem. 2021, 100, 233–247.

58

Mao, H. B.; Feng, J. Y.; Ma, X.; Wu, C.; Zhao, X. J. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanopart. Res. 2012, 14, 887.

59

Jung, J.; Lee, H.; Ha, I.; Cho, H.; Kim, K. K.; Kwon, J.; Won, P.; Hong, S.; Ko, S. H. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 2017, 9, 44609–44616.

60
Liang, X.; Zhou, J.; Li, G.; Zhao, T.; Zhu, P.; Sun, R.; Wong, C. In-situ redox nanowelding of copper nanowires with surficial oxide layer as solder for flexible transparent electromagnetic interference shielding. In 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, USA, 2019, pp 746–752.
61

Maheshwari, N.; Abd-Ellah, M.; Goldthorpe, I. A. Transfer printing of silver nanowire conductive ink for E-textile applications. Flex. Print. Electron. 2019, 4, 025005.

62

Hu, M. J.; Gao, J. F.; Dong, Y. C.; Li, K.; Shan, G. C.; Yang, S. L.; Li, R. K. Y. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 2012, 28, 7101–7106.

63

Jia, L. C.; Yan, D. X.; Liu, X. F.; Ma, R. J.; Wu, H. Y.; Li, Z. M. Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949.

64
Zhao, C.; Sun, Q. Y.; Hu, K.; Li, F. M.; Lv, C. H.; Zhang, Q. F.; Wang, M. Self-assembled woven Ag-nanowire 3D network film for ultrathin, transparent, and flexible surface electromagnetic interference shielding. Adv. Mater. Technol., in press, DOI: https://doi.org/10.1002/admt.202101540.
65

Gelves, G. A.; Al-Saleh, M. H.; Sundararaj, U. Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J. Mater. Chem. 2011, 21, 829–836.

66

Chang, Y.; Lye, M. L.; Zeng, H. C. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 2005, 21, 3746–3748.

67

Ravindren, R.; Mondal, S.; Nath, K.; Das, N. C. Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos. Part B Eng. 2019, 164, 559–569.

68

Wang, S. J.; Li, D. S.; Jiang, L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films. Adv. Mater. Interfaces 2019, 6, 1900961.

69

Hu, S. J.; Zeng, S. P.; Li, X. P.; Jiang, J. C.; Yang, W. J.; Chen, Y. T.; Li, M. J.; Zheng, J. J. Flexible and high performance of n-type thermoelectric PVDF composite film induced by nickel nanowires. Mater. Des. 2020, 188, 108496.

70

Remadevi, A.; Sreedeviamma, D. K.; Surendran, K. P. Printable hierarchical nickel nanowires for soft magnetic applications. ACS Omega 2018, 3, 14245–14257.

71

Jeevakumari, S. A. A.; Mothilal, T.; Ramesh, G.; Prakash, V. R. A. Mechanically toughened EMI shielding natural rubber composite in microwave frequency bands. Plast. Rubber Compos. 2021, 50, 241–248.

72

Lai, Z. Q.; Zhao, T.; Zhu, P. L.; Liu, D.; Liang, X. W.; Sun, R. Improved reliability of silver nanowire-based composites by electroplating: A theoretical and experimental study. ACS Appl. Electron. Mater. 2021, 3, 3329–3337.

73

Zhao, H. Q.; Cheng, Y.; Zhang, Y. N.; Zhang, Z.; Zhou, L.; Zhang, B. S. Core–shell hybrid nanowires with Co nanoparticles wrapped in N-doped porous carbon for lightweight microwave absorption. Dalton Trans. 2019, 48, 15263–15271.

74

Choi, H.; Heo, J. H.; Ha, S.; Kwon, B. W.; Yoon, S. P.; Han, J.; Kim, W. S.; Im, S. H.; Kim, J. Facile scalable synthesis of MoO2 nanoparticles by new solvothermal cracking process and their application to hole transporting layer for CH3NH3PbI3 planar perovskite solar cells. Chem. Eng. J. 2017, 310, 179–186.

75

Li, R. S.; Wang, S.; Bai, P. W.; Fan, B. B.; Zhao, B.; Zhang, R. Enhancement of electromagnetic interference shielding from the synergism between Cu@Ni nanorods and carbon materials in flexible composite films. Mater. Adv. 2021, 2, 718–727.

76

Guan, H. T.; Chen, G.; Zhang, S. B.; Wang, Y. D. Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Mater. Chem. Phys. 2010, 124, 639–645.

77

Guan, H. T.; Xie, J. B.; Chen, G.; Wang, Y. D. Facile synthesis of α-MnO2 nanorods at low temperature and their microwave absorption properties. Mater. Chem. Phys. 2014, 143, 1061–1068.

78

Zhou, M.; Zhang, X.; Wei, J. M.; Zhao, S. L.; Wang, L.; Feng, B. X. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 2011, 115, 1398–1402.

79

Bora, P. J.; Vinoy, K. J.; Ramamurthy, P. C.; Madras, G. Electromagnetic interference shielding efficiency of MnO2 nanorod doped polyaniline film. Mater. Res. Express 2017, 4, 025013.

80

Qin, M.; Liang, H. S.; Zhao, X. R.; Wu, H. J. Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity. J. Colloid Interface Sci. 2020, 566, 347–356.

81

Liu, X. F.; Cui, X. R.; Chen, Y. X.; Zhang, X. J.; Yu, R. H.; Wang, G. S.; Ma, H. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites. Carbon 2015, 95, 870–878.

82

You, W. B.; Bi, H.; She, W.; Zhang, Y.; Che, R. C. Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 2017, 13, 1602779.

83

Liang, L. Y.; Xu, P. H.; Wang, Y. F.; Shang, Y.; Ma, J. M.; Su, F. M.; Feng, Y. Z.; He, C. G.; Wang, Y. M.; Liu, C. T. Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management. Chem. Eng. J. 2020, 395, 125209.

84

Sun, L.; Zhang, L. D.; Liang, C. H.; Yuan, Z. G.; Zhang, Y.; Xu, W.; Zhang, J. X.; Chen, Y. Z. Chitosan modified Fe0 nanowires in porous anodic alumina and their application for the removal of hexavalent chromium from water. J. Mater. Chem. 2011, 21, 5877–5880.

85

Shen, J. Y.; Yao, Y. T.; Liu, Y. J.; Leng, J. S. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 2016, 4, 7614–7621.

86

Zhao, B.; Li, Y.; Zeng, Q.; Wang, L.; Ding, J.; Zhang, R.; Che, R. Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.

87

He, D. Y.; Zhang, N.; Iqbal, A.; Ma, Y. Y.; Lu, X. F.; Qiao, Z. A.; Yu, J. H.; Xu, H. B.; Wang, W.; Zhao, R. et al. Multispectral electromagnetic shielding using ultra-thin metal-metal oxide decorated hybrid nanofiber membranes. Commun. Mater. 2021, 2, 101.

88

Zhang, S.; Huang, X. W.; Xiao, W.; Zhang, L. L.; Yao, H.; Wang, L.; Luo, J. C.; Gao, J. F. Polyvinylpyrrolidone assisted preparation of highly conductive, antioxidation, and durable nanofiber composite with an extremely high electromagnetic interference shielding effectiveness. ACS Appl. Mater. Interfaces 2021, 13, 21865–21875.

89

Kim, H. R.; Fujimori, K.; Kim, B. S.; Kim, I. S. Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization. Compos. Sci. Technol. 2012, 72, 1233–1239.

90

Pallares, R. M.; Su, X. D.; Lim, S. H.; Thanh, N. T. K. Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects. J. Mater. Chem. C 2016, 4, 53–61.

91

Lin, S.; Wang, H. Y.; Wu, F.; Wang, Q. M.; Bai, X. P.; Zu, D.; Song, J. N.; Wang, D.; Liu, Z. L.; Li, Z. W. et al. Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. npj Flex. Electron. 2019, 3, 6.

92

Wang, Y. T.; Peng, H. K.; Li, T. T.; Shiu, B. C.; Zhang, X. F.; Lou, C. W.; Lin, J. H. Tuning lightweight, flexible, self-cleaning bio-inspired core–shell structure of nanofiber films for high-performance electromagnetic interference shielding. J. Mater. Sci. 2020, 55, 13008–13022.

93

Darwish, M. S. A.; Bakry, A.; Al-Harbi, L. M.; Khowdiary, M. M.; El-Henawy, A. A.; Yoon, J. Core–shell PA6@Fe3O4 nanofibers: Magnetic and shielding behavior. J. Dispersion Sci. Technol. 2020, 41, 1711–1719.

94

Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

95

Yang, H. L.; Shen, Z. J.; Peng, H. L.; Xiong, Z. Q.; Liu, C. B.; Xie, Y. 1D-3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 2021, 417, 128087.

96

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

97

Huan, X. H.; Wang, H. T.; Deng, W. C.; Yan, J. Q.; Xu, K.; Geng, H. B.; Guo, X. D.; Jia, X. L.; Zhou, J. S.; Yang, X. P. Integrating multi-Heterointerfaces in a 1D@2D@1D hierarchical structure via autocatalytic pyrolysis for ultra-efficient microwave absorption performance. Small 2022, 18, 2105411.

98

Jiang, C. M.; Tan, D. C.; Li, Q. K.; Huang, J. J.; Bu, J. Y.; Zang, L. Y.; Ji, R. N.; Bi, S.; Guo, Q. L. High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 15525–15535.

99

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

100

Wang, R.; Yang, E. Q.; Qi, X. S.; Xie, R.; Qin, S. J.; Deng, C. Y.; Zhong, W. Constructing and optimizing core@shell structure CNTs@MoS2 nanocomposites as outstanding microwave absorbers. Appl. Surf. Sci. 2020, 516, 146159.

101

Wang, R.; Qi, X. S.; Xie, R.; Gong, X.; Deng, C. Y.; Zhong, W. Constructing heterostructural Fe@Fe3C@carbon nanotubes/reduced graphene oxide nanocomposites as lightweight and high-efficiency microwave absorbers. J. Mater. Chem. C 2020, 8, 14515–14522.

102

Dassan, E. G. B.; Ab Rahman, A. A.; Abidin, M. S. Z.; Akil, H. M. Carbon nanotube-reinforced polymer composite for electromagnetic interference application: A review. Nanotechnol. Rev. 2020, 9, 768–788.

103
Zeng, Z. H.; Qiao, J.; Zhang, R. N.; Liu, J. R.; Nyström, G. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, in press, DOI: https://doi.org/10.1002/smm2.1118.
104

Weng, B. C.; Xu, F. H.; Lozano, K. Development of hierarchical structured carbon nanotube-nylon nanofiber mats. J. Appl. Polym. Sci. 2015, 132, 42535.

105

Mao, Y. P.; Mao, S. Y.; Ye, Z. G.; Xie, Z. X.; Zheng, L. S. Solvothermal synthesis and curie temperature of monodispersed barium Titanate nanoparticles. Mater. Chem. Phys. 2010, 124, 1232–1238.

106

Qian, X.; Zhang, Y. H.; Wu, Z. C.; Zhang, R. X.; Li, X. H.; Wang, M.; Che, R. C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021, 17, 2100283.

107

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

108

Liang, J.; Kou, H. R.; Ding, S. J. Complex hollow bowl-like nanostructures: Synthesis, application, and perspective. Adv. Funct. Mater. 2021, 31, 2007801.

109

Zhong, B.; Tang, X. H.; Huang, X. X.; Xia, L.; Zhang, X. D.; Wen, G. W.; Chen, Z. Metal-semiconductor Zn/ZnO core–shell nanocables: Facile and large-scale fabrication, growth mechanism, oxidation behavior, and microwave absorption performance. CrystEngComm 2015, 17, 2806–2814.

110

Xu, C. Y.; Liu, P. B.; Wu, Z. C.; Zhang, H. B.; Zhang, R. X.; Zhang, C.; Wang, L.; Wang, L. Y.; Yang, B. T.; Yang, Z. Q.; You, W. B.; Che, R. C. Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 2022, 9, 2200804.

111

Yang, H. J.; Cao, M. S.; Li, Y.; Shi, H. L.; Hou, Z. L.; Fang, X. Y.; Jin, H. B.; Wang, W. Z.; Yuan, J. Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2014, 2, 214–219.

112

Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.

113

Yang, H. J.; Cao, W. Q.; Zhang, D. Q.; Su, T. J.; Shi, H. L.; Wang, W. Z.; Yuan, J.; Cao, M. S. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.

114

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009–11017.

115

Yang, J.; Wang, Y. Q.; Zhang, R. R.; Ma, L.; Liu, W.; Qu, Z.; Zhang, L.; Zhang, S. L.; Tong, W.; Pi, L. et al. Observation of charge density wave transition in TaSe3 mesowires. Appl. Phys. Lett. 2019, 115, 033102.

116

Saleheen, A. I. U.; Chapai, R.; Xing, L. Y.; Nepal, R.; Gong, D. L.; Gui, X.; Xie, W. W.; Young, D. P.; Plummer, E. W.; Jin, R. Y. Evidence for topological semimetallicity in a chain-compound TaSe3. npj Quantum Mater. 2020, 5, 53.

117

Stolyarov, M. A.; Liu, G. X.; Bloodgood, M. A.; Aytan, E.; Jiang, C. L.; Samnakay, R.; Salguero, T. T.; Nika, D. L.; Rumyantsev, S. L.; Shur, M. S. et al. Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: Prospects of interconnect applications. Nanoscale 2016, 8, 15774–15782.

118

Geremew, A. K.; Rumyantsev, S.; Bloodgood, M. A.; Salguero, T. T.; Balandin, A. A. Unique features of the generation-recombination noise in quasi-one-dimensional van der Waals nanoribbons. Nanoscale 2018, 10, 19749–19756.

119

Barani, Z.; Kargar, F.; Ghafouri, Y.; Ghosh, S.; Godziszewski, K.; Baraghani, S.; Yashchyshyn, Y.; Cywiński, G.; Rumyantsev, S.; Salguero, T. T. et al. Electrically insulating flexible films with quasi-1D van der Waals fillers as efficient electromagnetic shields in the GHz and sub-THz frequency bands. Adv. Mater. 2021, 33, 2007286.

120

Barani, Z.; Kargar, F.; Ghafouri, Y.; Baraghani, S.; Sudhindra, S.; Mohammadzadeh, A.; Salguero, T. T.; Balandin, A. A. Electromagnetic-polarization-selective composites with quasi-1D van der Waals fillers: Nanoscale material functionality that mimics macroscopic systems. ACS Appl. Mater. Interfaces 2021, 13, 21527–21533.

121
Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater., in press, DOI: https://doi.org/10.1002/idm2.12026.
122

Wu, N.; Zeng, Z. H.; Kummer, N.; Han, D. X.; Zenobi, R.; Nyström, G. Ultrafine cellulose nanofiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding. Small Methods 2021, 5, 2100889.

123

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

124

Zeng, Z. H.; Mavrona, E.; Sacré, D.; Kummer, N.; Cao, J. M.; Müller, L. A. E.; Hack, E.; Zolliker, P.; Nyström, G. Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano 2021, 15, 7451–7462.

125

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose–MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

126

Ling, J. Q.; Zhai, W. T.; Feng, W. W.; Shen, B.; Zhang, J. F.; Zheng, W. G. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684.

127

Yuan, Y.; Sun, X. X.; Yang, M. L.; Xu, F.; Lin, Z. S.; Zhao, X.; Ding, Y. J.; Li, J. J.; Yin, W. L.; Peng, Q. Y. et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2017, 9, 21371–21381.

128

Weng, C. X.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale 2019, 11, 22804–22812.

129

Huang, T.; Wu, Z. C.; Lin, J. W.; Yu, Q.; Tan, D. G.; Li, L. A facile freeze-drying strategy to prepare hierarchically porous Co/C foams with excellent microwave absorption performance. ACS Appl. Electron. Mater. 2019, 1, 2541–2550.

130

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

131

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of RGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

132

Wang, L.; Shi, X. T.; Zhang, J. L.; Zhang, Y. L.; Gu, J. W. Lightweight and robust RGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J. Mater. Sci. Technol. 2020, 52, 119–126.

133

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

134

Menzel, R.; Barg, S.; Miranda, M.; Anthony, D. B.; Bawaked, S. M.; Mokhtar, M.; Al-Thabaiti, S. A.; Basahel, S. N.; Saiz, E.; Shaffer, M. S. P. Joule heating characteristics of emulsion-templated graphene aerogels. Adv. Funct. Mater. 2015, 25, 28–35.

135

Wan, Y. J.; Zhu, P. L.; Yu, S. H.; Sun, R.; Wong, C. P.; Liao, W. H. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding. Small 2018, 14, 1800534.

136

Lee, T. W.; Lee, S. E.; Jeong, Y. G. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl. Mater. Interfaces 2016, 8, 13123–13132.

137

Tang, Y.; Gong, S.; Chen, Y.; Yap, L. W.; Cheng, W. L. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 2014, 8, 5707–5714.

138

Wu, S. T.; Zou, M. C.; Li, Z. C.; Chen, D. Q.; Zhang, H.; Yuan, Y. J.; Pei, Y. M.; Cao, A. Y. Robust and stable Cu Nanowire@graphene core–shell aerogels for Ultraeffective electromagnetic interference shielding. Small 2018, 14, 1800634.

139

Zeng, Z. H.; Li, W. W.; Wu, N.; Zhao, S. Y.; Lu, X. H. Polymer-assisted fabrication of silver nanowire cellular monoliths: Toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials. ACS Appl. Mater. Interfaces 2020, 12, 38584–38592.

140

Li, S.; Qian, K. P.; Thaiboonrod, S.; Wu, H. M.; Cao, S. M.; Miao, M.; Shi, L. Y.; Feng, X. Flexible multilayered aramid nanofiber/silver nanowire films with outstanding thermal durability for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 151, 106643.

141

Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Zhang, Z. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 2016, 26, 303–310.

142

Fang, F.; Li, Y. Q.; Xiao, H. M.; Hu, N.; Fu, S. Y. Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material. J. Mater. Chem. C 2016, 4, 4193–4203.

143

Bai, S. C.; Guo, X. Z.; Zhang, X. Y.; Zhao, X. Y.; Yang, H. Y. Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106545.

Nano Research
Pages 9595-9613
Cite this article:
Cheng Y, Zhu W, Lu X, et al. One-dimensional metallic, magnetic, and dielectric nanomaterials-based composites for electromagnetic wave interference shielding. Nano Research, 2022, 15(10): 9595-9613. https://doi.org/10.1007/s12274-022-4781-9
Topics:
Part of a topical collection:

942

Views

32

Crossref

29

Web of Science

29

Scopus

2

CSCD

Altmetrics

Received: 13 June 2022
Revised: 11 July 2022
Accepted: 17 July 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return