AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Length-dependent alignment of large-area semiconducting carbon nanotubes self-assembly on a liquid–liquid interface

Haijian Wen1,2Jian Yao2Yijun Li3Yahui Li2Leitao Cao2Wanquan Chi2Yueyue Wang2Hehua Jin2Song Qiu2( )Jianshi Tang3( )Qingwen Li1,2( )
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
Key Laboratory of Multifunctional and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Integrated Circuits, Beijing Innovation Center for Future Chips, BNRist, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

The influence of semiconducting carbon nanotubes with different lengths and length distributions during aligned self-assembly on a liquid–liquid confined interface was investigated. Low-defect alignment arrays of carbon nanotubes were successfully achieved on 4-inch wafer with packing density around 100 CNTs·μm−1.

Abstract

Aligned arrays of semiconducting carbon nanotubes (s-CNTs) with high homogenous density and orientation are urgently needed for high-performance carbon-based electronics. Herein, a length-controlled approach using combined technologies was developed to regulate the s-CNT length and reduce the length distribution. The impact of different lengths and length distributions was studied during aligned self-assembly on a liquid–liquid confined interface was investigated. The results show that short s-CNTs with a narrow distribution have the best alignment uniformity over the large scale. The optimized and aligned s-CNT array can reach a density as high as 100 CNTs·μm−1 on a 4-inch wafer. The field-effect transistor (FET) performance of these optimized s-CNT arrays was 64% higher than arrays without length-control. This study clarified that rational control of s-CNTs with desired length and length distribution on the aligned self-assembly process within the liquid–liquid confined interface. The results illustrate a solid foundation for the application of emerging carbon-based electronics.

Electronic Supplementary Material

Download File(s)
12274_2022_4782_MOESM1_ESM.pdf (786.1 KB)

References

[1]

Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.

[2]

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

[3]

Cao, Q. Carbon nanotube transistor technology for more-Moore scaling. Nano Res. 2021, 14, 3051–3069.

[4]

Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

[5]

Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.

[6]

Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.

[7]

Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.

[8]

Jia, L.; Zhang, Y. F.; Li, J. Y.; You, C.; Xie, E. Q. Aligned single-walled carbon nanotubes by Langmuir–Blodgett technique. J. Appl. Phys. 2008, 104, 074318.

[9]

Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

[10]

Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.

[11]

He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

[12]
Zhao, M. Y.; Chen, Y. H.; Wang, K. X.; Zhang, Z. X.; Streit, J. K.; Fagan, J. A.; Tang, J. S.; Zheng, M.; Yang, C. Y.; Zhu, Z. et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368, 878–881.
[13]

Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877.

[14]

Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. E.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

[15]

Shi, H. W.; Ding, L.; Zhong, D. L.; Han, J.; Liu, L. J.; Xu, L.; Sun, P. K.; Wang, H.; Zhou, J. S.; Fang, L. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron. 2021, 4, 405–415.

[16]

Jinkins, K. R.; Foradori, S. M.; Saraswat, V.; Jacobberger, R. M.; Dwyer, J. H.; Gopalan, P.; Berson, A.; Arnold, M. S. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics. Sci. Adv. 2021, 7, eabh0640.

[17]

Gao, B.; Zhang, X. P.; Qiu, S.; Jin, H. H.; Song, Q. J.; Li, Q. W. Assembly of aligned semiconducting carbon nanotubes in organic solvents via introducing inter-tube electrostatic repulsion. Carbon 2019, 146, 172–180.

[18]

Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.

[19]

Bates, M. A.; Frenkel, D. Phase behavior of two-dimensional hard rod fluids. J. Chem. Phys. 2000, 112, 10034–10041.

[20]

Jordens, S.; Isa, L.; Usov, I.; Mezzenga, R. Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces. Nat. Commun. 2013, 4, 1917.

[21]

Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.

[22]

Yu, X. Q.; Liu, D.; Kang, L. X.; Yang, Y.; Zhang, X. P.; Lv, Q. J.; Qiu, S.; Jin, H. H.; Song, Q. J.; Zhang, J. et al. Recycling strategy for fabricating low-cost and high-performance carbon nanotube TFT devices. ACS Appl. Mater. Interfaces 2017, 9, 15719–15726.

[23]

Dong, L. Y.; Hang, H. B.; Park, J. G.; Mio, W.; Liang, R. Detecting carbon nanotube orientation with topological analysis of scanning electron micrographs. Nanomaterials 2022, 12, 1251.

[24]

Li, H. P.; Zhou, L. L. Effects of ambient air and temperature on ionic gel gated single-walled carbon nanotube thin-film transistor and circuits. ACS Appl. Mater. Interfaces 2015, 7, 22881–22887.

[25]

Ren, Y. F.; Li, M.; Li, X. Q.; Geng, Y.; Wang, X.; Zhao, J. W. High-performance flexible fully-printed all-carbon thin film transistors and ultrasensitive NH3 sensors. J. Mater. Chem. C 2021, 9, 2133–2144.

[26]

Xiao, H. S.; Xie, H. F.; Robin, M.; Zhao, J. W.; Shao, L.; Wei, M. M.; Portilla, L.; Pecunia, V.; Chen, S.; Lee, C. et al. Polarity tuning of carbon nanotube transistors by chemical doping for printed flexible complementary metal-oxide semiconductor (CMOS)-like inverters. Carbon 2019, 147, 566–573.

[27]

Komatsu, N.; Nakamura, M.; Ghosh, S.; Kim, D.; Chen, H. Z.; Katagiri, A.; Yomogida, Y.; Gao, W. L.; Yanagi, K.; Kono, J. Groove-assisted global spontaneous alignment of carbon nanotubes in vacuum filtration. Nano Lett. 2020, 20, 2332–2338.

[28]

Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.

[29]

Shastry, T. A.; Seo, J. W. T.; Lopez, J. J.; Arnold, H. N.; Kelter, J. Z.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Small 2013, 9, 45–51.

[30]

Li, G. L.; Tang, J. X. Diffusion of actin filaments within a thin layer between two walls. Phys. Rev. E 2004, 69, 061921.

[31]

Broersma, S. Viscous force and torque constants for a cylinder. J. Chem. Phys. 1981, 74, 6989–6990.

[32]

Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Ring closure of carbon nanotubes. Science 2001, 293, 1299–1301.

[33]

Yakobson, B. I.; Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanopart. Res. 2006, 8, 105–110.

[34]

Yao, J.; Li, Y. J.; Li, Y. H.; Sui, Q.; Wen, H. J.; Cao, L. T.; Cao, P.; Kang, L. X.; Tang, J. S.; Jin, H. H. et al. Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors. Carbon 2021, 184, 764–771.

[35]

Bishop, M. D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M. M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501.

[36]

Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613.

[37]

Fagan, J. A.; Becker, M. L.; Chun, J.; Nie, P. T.; Bauer, B. J.; Simpson, J. R.; Hight-Walker, A.; Hobbie, E. K. Centrifugal length separation of carbon nanotubes. Langmuir 2008, 24, 13880–13889.

[38]

Ohmori, S.; Saito, T.; Shukla, B.; Yumura, M.; Iijima, S. Fractionation of single wall carbon nanotubes by length using cross flow filtration method. ACS Nano 2010, 4, 3606–3610.

[39]

Khripin, C. Y.; Tu, X. M.; Heddleston, J. M.; Silvera-Batista, C.; Hight Walker, A. R.; Fagan, J.; Zheng, M. High-resolution length fractionation of surfactant-dispersed carbon nanotubes. Anal. Chem. 2013, 85, 1382–1388.

[40]

Hennrich, F.; Krupke, R.; Arnold, K.; Rojas Stütz, J. A.; Lebedkin, S.; Koch, T.; Schimmel, T.; Kappes, M. M. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B 2007, 111, 1932–1937.

[41]

Pagani, G.; Green, M. J.; Poulin, P.; Pasquali, M. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. USA 2012, 109, 11599–11604.

[42]

Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dunford, J. L.; Malenfant, P. R. L.; Humes, J.; Kroeger, J. A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 2015, 7, 15741–15747.

[43]

Temple, P. A.; Hathaway, C. E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 1973, 7, 3685–3697.

[44]

DeCamp, S. J.; Redner, G. S.; Baskaran, A.; Hagan, M. F.; Dogic, Z. Orientational order of motile defects in active nematics. Nat. Mater. 2015, 14, 1110–1115.

[45]

Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.

[46]

Léonard, F. Crosstalk between nanotube devices: Contact and channel effects. Nanotechnology 2006, 17, 2381–2385.

[47]

Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.

[48]

Choi, Y.; Kang, J.; Secor, E. B.; Sun, J.; Kim, H.; Lim, J. A.; Kang, M. S.; Hersam, M. C.; Cho, J. H. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits. Adv. Funct. Mater. 2018, 28, 1802610.

Nano Research
Pages 1568-1575
Cite this article:
Wen H, Yao J, Li Y, et al. Length-dependent alignment of large-area semiconducting carbon nanotubes self-assembly on a liquid–liquid interface. Nano Research, 2023, 16(1): 1568-1575. https://doi.org/10.1007/s12274-022-4782-8
Topics:

1147

Views

9

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 15 March 2022
Revised: 29 June 2022
Accepted: 17 July 2022
Published: 31 August 2022
© Tsinghua University Press 2022
Return