Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aligned arrays of semiconducting carbon nanotubes (s-CNTs) with high homogenous density and orientation are urgently needed for high-performance carbon-based electronics. Herein, a length-controlled approach using combined technologies was developed to regulate the s-CNT length and reduce the length distribution. The impact of different lengths and length distributions was studied during aligned self-assembly on a liquid–liquid confined interface was investigated. The results show that short s-CNTs with a narrow distribution have the best alignment uniformity over the large scale. The optimized and aligned s-CNT array can reach a density as high as 100 CNTs·μm−1 on a 4-inch wafer. The field-effect transistor (FET) performance of these optimized s-CNT arrays was 64% higher than arrays without length-control. This study clarified that rational control of s-CNTs with desired length and length distribution on the aligned self-assembly process within the liquid–liquid confined interface. The results illustrate a solid foundation for the application of emerging carbon-based electronics.
Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750.
Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.
Cao, Q. Carbon nanotube transistor technology for more-Moore scaling. Nano Res. 2021, 14, 3051–3069.
Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.
Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730–8745.
Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369–1372.
Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.
Jia, L.; Zhang, Y. F.; Li, J. Y.; You, C.; Xie, E. Q. Aligned single-walled carbon nanotubes by Langmuir–Blodgett technique. J. Appl. Phys. 2008, 104, 074318.
Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.
Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460–3466.
He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.
Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877.
Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. E.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.
Shi, H. W.; Ding, L.; Zhong, D. L.; Han, J.; Liu, L. J.; Xu, L.; Sun, P. K.; Wang, H.; Zhou, J. S.; Fang, L. et al. Radiofrequency transistors based on aligned carbon nanotube arrays. Nat. Electron. 2021, 4, 405–415.
Jinkins, K. R.; Foradori, S. M.; Saraswat, V.; Jacobberger, R. M.; Dwyer, J. H.; Gopalan, P.; Berson, A.; Arnold, M. S. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics. Sci. Adv. 2021, 7, eabh0640.
Gao, B.; Zhang, X. P.; Qiu, S.; Jin, H. H.; Song, Q. J.; Li, Q. W. Assembly of aligned semiconducting carbon nanotubes in organic solvents via introducing inter-tube electrostatic repulsion. Carbon 2019, 146, 172–180.
Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.
Bates, M. A.; Frenkel, D. Phase behavior of two-dimensional hard rod fluids. J. Chem. Phys. 2000, 112, 10034–10041.
Jordens, S.; Isa, L.; Usov, I.; Mezzenga, R. Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces. Nat. Commun. 2013, 4, 1917.
Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993–4999.
Yu, X. Q.; Liu, D.; Kang, L. X.; Yang, Y.; Zhang, X. P.; Lv, Q. J.; Qiu, S.; Jin, H. H.; Song, Q. J.; Zhang, J. et al. Recycling strategy for fabricating low-cost and high-performance carbon nanotube TFT devices. ACS Appl. Mater. Interfaces 2017, 9, 15719–15726.
Dong, L. Y.; Hang, H. B.; Park, J. G.; Mio, W.; Liang, R. Detecting carbon nanotube orientation with topological analysis of scanning electron micrographs. Nanomaterials 2022, 12, 1251.
Li, H. P.; Zhou, L. L. Effects of ambient air and temperature on ionic gel gated single-walled carbon nanotube thin-film transistor and circuits. ACS Appl. Mater. Interfaces 2015, 7, 22881–22887.
Ren, Y. F.; Li, M.; Li, X. Q.; Geng, Y.; Wang, X.; Zhao, J. W. High-performance flexible fully-printed all-carbon thin film transistors and ultrasensitive NH3 sensors. J. Mater. Chem. C 2021, 9, 2133–2144.
Xiao, H. S.; Xie, H. F.; Robin, M.; Zhao, J. W.; Shao, L.; Wei, M. M.; Portilla, L.; Pecunia, V.; Chen, S.; Lee, C. et al. Polarity tuning of carbon nanotube transistors by chemical doping for printed flexible complementary metal-oxide semiconductor (CMOS)-like inverters. Carbon 2019, 147, 566–573.
Komatsu, N.; Nakamura, M.; Ghosh, S.; Kim, D.; Chen, H. Z.; Katagiri, A.; Yomogida, Y.; Gao, W. L.; Yanagi, K.; Kono, J. Groove-assisted global spontaneous alignment of carbon nanotubes in vacuum filtration. Nano Lett. 2020, 20, 2332–2338.
Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.
Shastry, T. A.; Seo, J. W. T.; Lopez, J. J.; Arnold, H. N.; Kelter, J. Z.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Small 2013, 9, 45–51.
Li, G. L.; Tang, J. X. Diffusion of actin filaments within a thin layer between two walls. Phys. Rev. E 2004, 69, 061921.
Broersma, S. Viscous force and torque constants for a cylinder. J. Chem. Phys. 1981, 74, 6989–6990.
Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Ring closure of carbon nanotubes. Science 2001, 293, 1299–1301.
Yakobson, B. I.; Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanopart. Res. 2006, 8, 105–110.
Yao, J.; Li, Y. J.; Li, Y. H.; Sui, Q.; Wen, H. J.; Cao, L. T.; Cao, P.; Kang, L. X.; Tang, J. S.; Jin, H. H. et al. Rapid annealing and cooling induced surface cleaning of semiconducting carbon nanotubes for high-performance thin-film transistors. Carbon 2021, 184, 764–771.
Bishop, M. D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M. M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492–501.
Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613.
Fagan, J. A.; Becker, M. L.; Chun, J.; Nie, P. T.; Bauer, B. J.; Simpson, J. R.; Hight-Walker, A.; Hobbie, E. K. Centrifugal length separation of carbon nanotubes. Langmuir 2008, 24, 13880–13889.
Ohmori, S.; Saito, T.; Shukla, B.; Yumura, M.; Iijima, S. Fractionation of single wall carbon nanotubes by length using cross flow filtration method. ACS Nano 2010, 4, 3606–3610.
Khripin, C. Y.; Tu, X. M.; Heddleston, J. M.; Silvera-Batista, C.; Hight Walker, A. R.; Fagan, J.; Zheng, M. High-resolution length fractionation of surfactant-dispersed carbon nanotubes. Anal. Chem. 2013, 85, 1382–1388.
Hennrich, F.; Krupke, R.; Arnold, K.; Rojas Stütz, J. A.; Lebedkin, S.; Koch, T.; Schimmel, T.; Kappes, M. M. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B 2007, 111, 1932–1937.
Pagani, G.; Green, M. J.; Poulin, P.; Pasquali, M. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. USA 2012, 109, 11599–11604.
Ding, J. F.; Li, Z.; Lefebvre, J.; Cheng, F. Y.; Dunford, J. L.; Malenfant, P. R. L.; Humes, J.; Kroeger, J. A hybrid enrichment process combining conjugated polymer extraction and silica gel adsorption for high purity semiconducting single-walled carbon nanotubes (SWCNT). Nanoscale 2015, 7, 15741–15747.
Temple, P. A.; Hathaway, C. E. Multiphonon Raman spectrum of silicon. Phys. Rev. B 1973, 7, 3685–3697.
DeCamp, S. J.; Redner, G. S.; Baskaran, A.; Hagan, M. F.; Dogic, Z. Orientational order of motile defects in active nematics. Nat. Mater. 2015, 14, 1110–1115.
Rao, A. M.; Jorio, A.; Pimenta, M. A.; Dantas, M. S. S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 1820–1823.
Léonard, F. Crosstalk between nanotube devices: Contact and channel effects. Nanotechnology 2006, 17, 2381–2385.
Ha, M. J.; Xia, Y.; Green, A. A.; Zhang, W.; Renn, M. J.; Kim, C. H.; Hersam, M. C.; Frisbie, C. D. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 2010, 4, 4388–4395.
Choi, Y.; Kang, J.; Secor, E. B.; Sun, J.; Kim, H.; Lim, J. A.; Kang, M. S.; Hersam, M. C.; Cho, J. H. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits. Adv. Funct. Mater. 2018, 28, 1802610.