AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of monodispersed B, N co-doped hierarchical porous carbon nanocages through confined etching to boost electrocatalytic oxygen reduction

Xuefei Wang1,2Chao Han1Haitao Li2Panpan Su2Na Ta2Yanfu Ma2Zhenguo Huang1( )Jian Liu2,3( )
School of Civil & Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
DICP-Surrey Joint Centre for Future Materials, University of Surrey Guildford, Surrey, GU2 7XH, UK
Show Author Information

Graphical Abstract

By introducing different boron-containing guest molecules into zeolite imidazole framework (ZIF)-8 hosts via an integrated double-solvent impregnation and nanocofined-etching method, ZIF-8 derived B,N@C-AB (AB = ammonia borane) and B,N@C-BA (BA = boric acid) uniform hierarchical porous carbon nanocages were synthesized. The B,N@Cs displayed high catalytic activities for electrochemical oxygen reduction reaction, and the enhancement is due to the coexistence of B and N and the mass transfer promoted by the unique hierarchical porous structure.

Abstract

Dual heteroatom-doped carbons have attracted widespread research attention as catalysts in the field of energy storage and conversion due to their unique electronic structures and chemical tunability. In particular, boron and nitrogen co-doped carbon (B,N@C) has shown great potential for photo/electrocatalytic applications. However, more needs to be done for rational designing and regulating the structure of these materials to improve their catalytic performance. Herein, monodispersed hierarchical porous B,N@C nanocages were fabricated by pyrolyzing zeolite imidazole framework (ZIF) which was treated with ammonia borane or boric acid via an integrated double-solvent impregnation and nanocofined-etching method. The treated ZIF-8 provided an essential structural template to achieve B, N co-doped hierarchical structures with micro/meso/macro multimodal pore size distributions. The resultant B,N@C nanocages displayed high catalytic activities for electrochemical oxygen reduction reaction (ORR) in alkaline media, outperforming most carbon-based catalysts, particularly from the perspective of the half-wave potentials. Such high catalytic performance is due to the enhanced activity by the coexistence of B and N and the mass transfer promoted by the unique hierarchical porous structure.

Electronic Supplementary Material

Download File(s)
12274_2022_4786_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Zhang, Y. B.; Hu, J. B.; Krishna, R.; Wang, L. Y.; Yang, L. F.; Cui, X. L.; Duttwyler, S; Xing, H. B. Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene. Angew. Chem., Int. Ed. 2020, 59, 17664–17669.

[2]

Sun, L. M.; Yuan, Y. S.; Wang, F.; Zhao, Y. L.; Zhan, W. W.; Han, X. G. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 74, 104909.

[3]

Xie, X. C.; Huang, K. J.; Wu, X. Metal-organic framework derived hollow materials for electrochemical energy storage. J. Mater. Chem. A 2018, 6, 6754–6771.

[4]

Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.

[5]

Wang, C. H.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

[6]

Song, X. K.; Jiang, Y.; Cheng, F.; Earnshaw, J.; Na, J.; Li, X. P.; Yamauchi, Y. Hollow carbon-based nanoarchitectures based on ZIF: Inward/outward contraction mechanism and beyond. Small 2021, 17, 2004142.

[7]

Zhang, K. L.; Hu, H. J.; Shi, L. T.; Jia, B. H.; Huang, H. W.; Han, X. P.; Sun, X. D.; Ma, T. Y. Strategies for optimizing the photocatalytic water-splitting performance of metal-organic framework-based materials. Small Sci. 2021, 1, 2100060.

[8]

Wang, K. D.; Wu, C.; Wang, F.; Jiang, G. Q. MOF-derived CoPx nanoparticles embedded in nitrogen-doped porous carbon polyhedrons for nanomolar sensing of p-nitrophenol. ACS Appl. Nano Mater. 2018, 1, 5843–5853.

[9]

Pan, F. P.; Zhang, H. G.; Liu, K. X.; Cullen, D.; More, K.; Wang, M. Y.; Feng, Z. X.; Wang, G. F.; Wu, G.; Li, Y. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 2018, 8, 3116–3122.

[10]

Xia, W.; Zhu, J. H.; Guo, W. H.; An, L.; Xia, D. G.; Zou, R. Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613.

[11]

Cai, Z. X.; Wang, Z. L.; Xia, Y. J.; Lim, H.; Zhou, W.; Taniguchi, A.; Ohtani, M.; Kobiro, K.; Fujita, T.; Yamauchi, Y. Tailored catalytic nanoframes from metal-organic frameworks by anisotropic surface modification and etching for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 4747–4755.

[12]

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient orr electrocatalyst. Adv. Mater. 2020, 32, 2004670.

[13]

Fang, Y. X.; Wang, X. C. Metal-free boron-containing heterogeneous catalysts. Angew. Chem., Int. Ed. 2017, 56, 15506–15518.

[14]

Li, Z. L.; Chen, Y. P.; Ma, T. Y.; Jiang, Y. Z.; Chen, J.; Pan, H. G.; Sun, W. P. 2D metal-free nanomaterials beyond graphene and its analogues toward electrocatalysis applications. Adv. Energy Mater. 2021, 11, 2101202.

[15]

Wu, J.; Zheng, X. J.; Jin, C.; Tian, J. H.; Yang, R. Z. Ternary doping of phosphorus, nitrogen, and sulfur into porous carbon for enhancing electrocatalytic oxygen reduction. Carbon 2015, 92, 327–338.

[16]

Zhao, S. Y.; Liu, J.; Li, C. X.; Ji, W. B.; Yang, M. M.; Huang, H.; Liu, Y.; Kang, Z. H. Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 22297–22304.

[17]

Huang, P. M.; Li, H. D.; Huang, X. Y.; Chen, D. Y. Multiheteroatom-doped porous carbon catalyst for oxygen reduction reaction prepared using 3D network of ZIF-8/polymeric nanofiber as a facile-doping template. ACS Appl. Mater. Interfaces 2017, 9, 21083–21088.

[18]

Rao, C.; N. R.; Chhetri, M. Borocarbonitrides as metal-free catalysts for the hydrogen evolution reaction. Adv. Mater. 2019, 31, 1803668.

[19]

Zheng, M. F.; Shi, J. L.; Yuan, T.; Wang, X. C. Metal-free dehydrogenation of N-heterocycles by ternary h-BCN nanosheets with visible light. Angew. Chem. 2018, 130, 5585–5589.

[20]

Rao, C. N. R.; Gopalakrishnan, K. Borocarbonitrides, BxCyNz: Synthesis, characterization, and properties with potential applications. ACS Appl. Mater. Interfaces 2017, 9, 19478–19494.

[21]

Wang , S. Y.; Iyyamperumal , E.; Roy, A.; Xue, Y. H.; Yu, D. S.; Dai, L. M. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 2011, 50, 11756–11760.

[22]

Hao, Y. Z.; Wang, S. Z.; Shao, Y. L.; Wu, Y. Z.; Miao, S. D. High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. 2020, 10, 1902836.

[23]

Lei, W. W.; Qin, S.; Liu, D.; Portehault, D.; Liu, Z. W.; Chen, Y. Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chem. Commun. 2013, 49, 352–354.

[24]

Nandan, R.; Goswami, G. K.; Nanda, K. K. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat. Appl. Energy. 2017, 205, 1050–1058.

[25]

Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

[26]

Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

[27]

Chhetri, M.; Maitra, S.; Chakraborty, H.; Waghmare, U. V.; Rao, C.; N. R. Superior performance of borocarbonitrides, BxCyNz, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 95–101.

[28]

Zhang, H. W.; Li, Y. Y.; Huang, W. Q.; Zhou, B. X.; Ma, S. F.; Lu, Y. X.; Pan, A. L.; Huang, G. F. Hollow BCN microrods with hierarchical multichannel structure as a multifunctional material: Synergistic effects of structural topology and composition. Carbon 2019, 148, 231–240.

[29]

Shi, D.; Chang, B.; Ai, Z. Z.; Jiang, H. H.; Chen, F. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Hao, X. P. Boron carbonitride with tunable B/N lewis acid/base sites for enhanced electrocatalytic overall water splitting. Nanoscale 2021, 13, 2849–2854.

[30]

Chen, C.; Yan, D. F.; Wang, Y.; Zhou, Y. Y.; Zou, Y. Q.; Li, Y. F.; Wang, S. Y. B–N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 2019, 15, 1805029.

[31]

Geng, Q. H.; Huang, G. X.; Liu, Y. B.; Li, Y. Y.; Liu, L. H.; Yang, X. H.; Wang, Q.; Zhang, C. X. Facile synthesis of B/N co-doped 2D porous carbon nanosheets derived from ammonium humate for supercapacitor electrodes. Electrochim. Acta 2019, 298, 1–13.

[32]

Wang, S. Z.; Ma, F. K.; Jiang, H. H.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P. Band gap-tunable porous borocarbonitride nanosheets for high energy-density supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 19588–19597.

[33]

Liu, M. R.; Hong, Q. L.; Li, Q. H.; Du, Y. H.; Zhang, H. X.; Chen, S. M.; Zhou, T. H.; Zhang, J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv. Funct. Mater. 2018, 28, 1801136.

[34]

Qian, Y. H.; Hu, Z. G.; Ge, X. M.; Yang, S. L.; Peng, Y. W.; Kang, Z. X.; Liu, Z. L.; Lee, J. Y.; Zhao, D. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 2017, 111, 641–650.

[35]

Chen, X. D.; Xie, Y. K.; Shao, Y. X.; Shen, K.; Li, Y. W. Facile synthesis of boron and nitrogen dual-doped hollow mesoporous carbons for efficient reduction of 4-nitrophenol. ACS Appl. Mater. Interfaces 2021, 13, 42598–42604.

[36]

Van Nguyen, C.; Lee, S.; Chung, Y. G.; Chiang, W. H.; Wu, K. C. W. Synergistic effect of metal-organic framework-derived boron and nitrogen heteroatom-doped three-dimensional porous carbons for precious-metal-free catalytic reduction of nitroarenes. Appl. Catal. B Environ. 2019, 257, 117888.

[37]

Li, Y. Q.; Xu, H. B.; Huang, H. Y.; Gao, L. G.; Zhao, Y. Y.; Ma, T. L. Synthesis of Co-B in porous carbon using a metal-organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochem. Commun. 2018, 86, 140–144.

[38]

Tabassum, H.; Mahmood, A.; Wang, Q. F.; Xia, W.; Liang, Z. B.; Qiu, B.; Zhao, R.; Zou, R. Q. Hierarchical cobalt hydroxide and B/N co-doped graphene nanohybrids derived from metal-organic frameworks for high energy density asymmetric supercapacitors. Sci. Rep. 2017, 7, 43084.

[39]

Tabassum, H.; Guo, W. H.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q. F.; Zou, R. Q. Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N Co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv. Energy Mater. 2017, 7, 1601671.

[40]

Zhang, H. B.; Ma, Z. J.; Duan, J. J.; Liu, H. M.; Liu, G. G.; Wang, T.; Chang, K.; Li, M.; Shi, L.; Meng, X. G. et al. Active sites implanted carbon cages in core–shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 2016, 10, 684–694.

[41]

Wei, X. D.; Li, N.; Zhang, X. M. Co/CoO/C@B three-phase composite derived from ZIF67 modified with NaBH4 solution as the electrocatalyst for efficient oxygen evolution. Electrochim. Acta 2018, 264, 36–45.

[42]

Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Sanad, M. F.; Aldalbahi, A.; Alvarado-Tenorio, B.; Du, A. J.; Santiago, A. R. P.; Noveron, J. C. Controlling the interfacial charge polarization of MOF-derived 0D–2D vdW architectures as a unique strategy for bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 3919–3929.

[43]

Wan, Y. T.; Zhang, W.; Han, X. L.; Zhou, L.; Zhen, H. J.; Wu, C. Z.; Yu, Q.; Xiu, G. L. B,N-decorated carbocatalyst based on Fe-MOF/BN as an efficient peroxymonosulfate activator for bisphenol A degradation. J. Hazard. Mater. 2022, 430, 127832.

[44]

Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. Cao-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.

[45]

Tang, L.; Zhang, S. B.; Wu, Q. L.; Wang, X. R.; Wu, H.; Jiang, Z. Y. Heterobimetallic metal-organic framework nanocages as highly efficient catalysts for CO2 conversion under mild conditions. J. Mater. Chem. A 2018, 6, 2964–2973.

[46]

Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

[47]

Hobday, C. L.; Woodall, C. H.; Lennox, M. J.; Frost, M.; Kamenev, K.; Düren, T.; Morrison, C. A.; Moggach, S. A. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat. Commun. 2018, 9, 1429.

[48]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[49]

Zhou, Y. H.; Cao, X. Y.; Ning, J. Z.; Ji, C. C.; Cheng, Y.; Gu, J. Pd-doped Cu nanoparticles confined by ZIF-67@ZIF-8 for efficient dehydrogenation of ammonia borane. Int. J. Hydrogen Energy 2020, 45, 31440–31451.

[50]

Wang, Z. K.; Zhang, B. S.; Ye, C. L.; Chen, L. Y. Recovery of Au(III) from leach solutions using thiourea functionalized zeolitic imidazolate frameworks (TU*ZIF-8). Hydrometallurgy 2018, 180, 262–270.

[51]
Chang, F. F.; Su, P. P.; Guharoy, U.; Ye, R. P.; Ma, Y. F.; Zheng, H. J.; Jia, Y.; Liu, J. Edge-enriched N, S co-doped hierarchical porous carbon for oxygen reduction reaction. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.04.060.
[52]

Morabito, J. V.; Chou, L. Y.; Li, Z. H.; Manna, C. M.; Petroff, C. A.; Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C. K. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal-organic framework crystals. J. Am. Chem. Soc. 2014, 136, 12540–12543.

[53]

Basu, O.; Mukhopadhyay, S.; De, A.; Das, A.; Das, S. K. Tuning the electrochemical and catalytic ORR performance of C60 by its encapsulation in ZIF-8: A solid-state analogue of dilute fullerene solution. Mater. Chem. Front. 2021, 5, 7654–7665.

[54]

Gutiérrez, M.; Martín, C.; Van Der Auweraer, M.; Hofkens, J.; Tan, J. C. Electroluminescent guest@MOF nanoparticles for thin film optoelectronics and solid-state lighting. Adv. Opt. Mater. 2020, 8, 2000670.

[55]

Xia, Y.; Zhao, X. H.; Xia, C.; Wu, Z. Y.; Zhu, P.; Kim, J. Y.; Bai, X. W.; Gao, G. H.; Hu, Y. F.; Zhong, J. et al. Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nat. Commun. 2021, 12, 4225.

[56]

Wang, J.; Li, H. G.; Liu, S. H.; Hu, Y. F.; Zhang, J.; Xia, M. R.; Hou, Y. L.; Tse, J.; Zhang, J. J.; Zhao, Y. F. Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem., Int. Ed. 2021, 60, 181–185.

[57]

Ma, X. Y.; Du, J. J.; Sun, H.; Ye, F. H.; Wang, X.; Xu, P. F.; Hu, C. G.; Zhang, L. P.; Liu, D. Boron, nitrogen Co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Appl. Catal. B Environ. 2021, 298, 120543.

[58]

Chang, B.; Li, L. L.; Shi, D.; Jiang, H. H.; Ai, Z. Z.; Wang, S. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Li, Y. L. et al. Metal-free boron carbonitride with tunable boron lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B Environ. 2021, 283, 119622.

[59]

Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Curry, M. L.; Du, A. J.; Puente Santiago, A. R.; Echegoyen, L.; Noveron, J. C. Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry. J. Am. Chem. Soc. 2021, 143, 1203–1215.

[60]

Zhu, Q. L.; Xia, W.; Akita, T.; Zou, R. Q.; Xu, Q. Metal-organic framework-derived honeycomb-like open porous nanostructures as precious-metal-free catalysts for highly efficient oxygen electroreduction. Adv. Mater. 2016, 28, 6391–6398.

[61]

Zhu, Q. L.; Xia, W.; Zheng, L. R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.

[62]
Stephens, F. H.; Pons, V.; Baker, R. T. Ammonia-borane: The hydrogen source par excellence? Dalton Trans. 2007, 2613–2626.
[63]

Brockman, A.; Zheng, Y.; Gore, J. A study of catalytic hydrolysis of concentrated ammonia borane solutions. Int. J. Hydrogen Energy 2010, 35, 7350–7356.

[64]

Demirci, U. B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013.

[65]

Harabor, A.; Rotaru, P.; Scorei, R. I.; Harabor, N. A. Non-conventional hexagonal structure for boric acid. J. Therm. Anal. Calorim. 2014, 118, 1375–1384.

[66]

Huang, C. M.; Mutailipu, M.; Zhang, F. F.; Griffith, K. J.; Hu, C.; Yang, Z. H.; Griffin, J. M.; Poeppelmeier, K. R.; Pan, S. L. Expanding the chemistry of borates with functional [BO2] anions. Nat. Commun. 2021, 12, 2597.

[67]

Kroeker, S.; Stebbins, J. F. Three-coordinated boron-11 chemical shifts in borates. Inorg. Chem. 2001, 40, 6239–6246.

[68]

Geng, S. Y.; Shah, F. U.; Liu, P.; Antzutkin, O. N.; Oksman, K. Plasticizing and crosslinking effects of borate additives on the structure and properties of poly(vinyl acetate). RSC Adv. 2017, 7, 7483–7491.

[69]

Li, Z. Y.; Zhu, G. S.; Lu, G. Q.; Qiu, S. L.; Yao, X. D. Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: Enhancing kinetics and eliminating ammonia. J. Am. Chem. Soc. 2010, 132, 1490–1491.

[70]

Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

[71]

Wei, P.; Li, X. G.; He, Z. M.; Sun, X. P.; Liang, Q. R.; Wang, Z. Y.; Fang, C.; Li, Q.; Yang, H.; Han, J. T. et al. Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chem. Eng. J. 2021, 422, 130134.

[72]

Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.

[73]

Majchrzak, D.; Grodzicki, M.; Moszak, K.; Zdanowicz, E.; Serafińczuk, J.; Pucicki, D.; Kudrawiec, R.; Hommel, D. Influence of pulsed Al deposition on quality of Al-rich Al(Ga)N structures grown by molecular beam epitaxy. Surf. Interfaces 2021, 27, 101560.

[74]

Li, X. T.; Fan, L. L.; Xu, B.; Shang, Y. X.; Li, M. F.; Zhang, L.; Liu, S.; Kang, Z. X.; Liu, Z. N.; Lu, X. Q. et al. Single-atom-like B-N3 sites in ordered macroporous carbon for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 53892–53903.

[75]

Gong, Y. J.; Fei, H. L.; Zou, X. L.; Zhou, W.; Yang, S. B.; Ye, G. L.; Liu, Z.; Peng, Z. W.; Lou, J.; Vajtai, R. et al. Boron- and nitrogen-substituted graphene nanoribbons as efficient catalysts for oxygen reduction reaction. Chem. Mater. 2015, 27, 1181–1186.

[76]

Miao, H.; Li, S. H.; Wang, Z. H.; Sun, S. S.; Kuang, M.; Liu, Z. P.; Yuan, J. L. Enhancing the pyridinic N content of nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. Int. J. Hydrogen Energy 2017, 42, 28298–28308.

[77]

Wu, J. J.; Ma, L. L.; Yadav, R. M.; Yang, Y. C.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P. M. Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 14763–14769.

[78]

Wang, T.; He, Y.; Liu, Y. J.; Guo, F. J.; Li, X. F.; Chen, H. B.; Li, H. M.; Lin, Z. Q. A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 2021, 79, 105487.

[79]

Meng, J. S.; Niu, C. J.; Xu, L. H.; Li, J. T.; Liu, X.; Wang, X. P.; Wu, Y. Z.; Xu, X. M.; Chen, W. Y.; Li, Q. et al. General oriented formation of carbon nanotubes from metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 8212–8221.

[80]

Li, L. J.; Dai, P. C.; Gu, X.; Wang, Y.; Yan, L. T.; Zhao, X. B. High oxygen reduction activity on a metal-organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. J. Mater. Chem. A 2017, 5, 789–795.

[81]

Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.

Nano Research
Pages 290-298
Cite this article:
Wang X, Han C, Li H, et al. Fabrication of monodispersed B, N co-doped hierarchical porous carbon nanocages through confined etching to boost electrocatalytic oxygen reduction. Nano Research, 2023, 16(1): 290-298. https://doi.org/10.1007/s12274-022-4786-4
Topics:

813

Views

17

Crossref

12

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 15 May 2022
Revised: 06 July 2022
Accepted: 17 July 2022
Published: 13 August 2022
© Tsinghua University Press 2022
Return