AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Universal peroxidase-like strategy for sensitive glucose detection in complex matrix

Guohua JiangZhaoyan YangKai ZhuShenfei ZongLei WuZhuyuan Wang( )Yiping Cui( )
Advanced Photonics Center, Southeast University, Nanjing 210096, China
Show Author Information

Graphical Abstract

A universal peroxidase-like strategy is developed for sensitive glucose detection in complex matrix.

Abstract

Glucose detection in complex matrix such as physiological fluids and drinks can provide useful information guide for people. However, traditional detection methods toward complex matrix suffer from the impurity interference or complex pretreatments. So, it is important to exploit a universal and sensitive glucose detection strategy in complex matrix. In this work, a cascade catalytic scheme based on peroxidase-like MBs@MIL-100(Fe)@Ag (MMA) is developed for sensitive glucose detection in complex solution. Using 3,3’,5,5’-tetramethylbenzidine (TMB) as an indicator, MMA can trigger catalytic cascade reactions for specific glucose sensing. In particular, the peroxidase-like MIL-100(Fe) serves as both the catalysis unit and enrichment unit. Oxidation state of TMB (oxTMB) can be effectively and specifically enriched by MIL-100(Fe) to exclude the interference of undesired impurities and macromolecules, which is suitable for complex sample matrix including colored soda and saliva. In addition, utilizing the peroxidase-like activity of MIL-100(Fe) for self-clean, the residual indicator molecules can be degraded, resulting in the recyclable use of MMA.

Electronic Supplementary Material

Download File(s)
12274_2022_4788_MOESM1_ESM.pdf (3 MB)

References

[1]

Lin, W. J.; Lin, Y. S.; Chang, H. T.; Unnikrishnan, B.; Huang, C. C. Electrocatalytic CuBr@CuO nanoparticles based salivary glucose probes. Biosens. Bioelectron. 2021, 194, 113610.

[2]

Xu, Z. H.; Wang, Q. Z.; Li, R. X.; Zhangsun, H.; Dong, M. N.; Wang, L. Surface selenylation engineering for construction of a hierarchical NiSe2/carbon nanorod: A high-performance nonenzymatic glucose sensor. ACS Appl. Mater. Interfaces 2021, 13, 22866–22873.

[3]

Todo, H. Continuous glucose monitoring can disclose glucose fluctuation in advanced Parkinsonian syndromes. Neurol. Int. 2018, 10, 7921.

[4]

Flockhart, M.; Nilsson, L. C.; Tais, S.; Ekblom, B.; Apro, W.; Larsen, F. J. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021, 33, 957–970.e6.

[5]

Boselli, L.; Pomili, T.; Donati, P.; Pompa, P. P. Nanosensors for visual detection of glucose in biofluids: Are we ready for instrument-free home-testing? Materials 2021, 14, 1978.

[6]

Lian, K.; Feng, H. Y.; Liu, S. X.; Wang, K. J.; Liu, Q.; Deng, L. P.; Wang, G. Y.; Chen, Y. H.; Liu, G. Z. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens. Bioelectron. 2022, 203, 114029.

[7]

Zhang, P. Z.; Zhang, R. G.; Sirisena, S.; Gan, R. Y.; Fang, Z. X. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859.

[8]

Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

[9]

Chen, F. F.; Zhu, Y. J.; Xiong, Z. C.; Sun, T. W. Hydroxyapatite nanowires@metal–organic framework core/shell nanofibers: Templated synthesis, peroxidase-like activity, and derived flexible recyclable test paper. Chem. -Eur. J. 2017, 23, 3328–3337.

[10]

Sun, Y.; Li, P. P.; Zhu, Y.; Zhu, X. H.; Zhang, Y. Y.; Liu, M. L.; Liu, Y. In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens. Bioelectron. 2021, 194, 113600.

[11]

Harischandra, N. R.; Pallavi, M. S.; Bheemanna, M.; PavanKumar, K.; Reddy, V. C. S.; Udaykumar, N. R.; Paramasivam, M.; Yadav, S. Simultaneous determination of 79 pesticides in pigeonpea grains using GC-MS/MS and LC-MS/MS. Food Chem. 2021, 347, 128986.

[12]

Jia, Y. Q.; Qian, J. S.; Pan, B. C. Dual-functionalized MIL-101(Cr) for the selective enrichment and ultrasensitive analysis of trace per- and poly-fluoroalkyl substances. Anal. Chem. 2021, 93, 11116–11122.

[13]

Subaihi, A.; Trivedi, D. K.; Hollywood, K. A.; Bluett, J.; Xu, Y.; Muhamadali, H.; Ellis, D. I.; Goodacre, R. Quantitative online liquid chromatography surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites. Anal. Chem. 2017, 89, 6702–6709.

[14]

Dai, J.; Zhang, H.; Huang, C.; Chen, Z. Y.; Han, A. R. M. A gel-based separation-free point-of-care device for whole blood glucose detection. Anal. Chem. 2020, 92, 16122–16129.

[15]

Liu, X. J.; Yang, S. K.; Li, Y.; Wang, B.; Guo, J. H.; Ma, X. Mesoporous nanostructures encapsulated with metallic nanodots for smart SERS sensing. ACS Appl. Mater. Interfaces 2021, 13, 186–195.

[16]

Su, Y. Y.; Wu, D.; Chen, J.; Chen, G.; Hu, N.; Wang, H. L.; Wang, P. X.; Han, H. Y.; Li, G. L.; Wut, Y. N. Ratiometric surface enhanced Raman scattering immunosorbent assay of allergenic proteins via covalent organic framework composite material based nanozyme tag triggered Raman signal "turn-on" and amplification. Anal. Chem. 2019, 91, 11687–11695.

[17]

Hu, S.; Jiang, Y. N.; Wu, Y. P.; Guo, X. Y.; Ying, Y.; Wen, Y.; Yang, H. F. Enzyme-free tandem reaction strategy for surface-enhanced Raman scattering detection of glucose by using the composite of Au nanoparticles and porphyrin-based metal–organic framework. ACS Appl. Mater. Interfaces 2020, 12, 55324–55330.

[18]

Arabi, M.; Ostovan, A.; Zhang, Z. Y.; Wang, Y. Q.; Mei, R. C.; Fu, L. W.; Wang, X. Y.; Ma, J. P.; Chen, L. X. Label-free SERS detection of Raman-Inactive protein biomarkers by Raman reporter indicator: Toward ultrasensitivity and universality. Biosens. Bioelectron. 2021, 174, 112825.

[19]

Jiang, S. L.; Chen, Q.; Lin, J. B.; Liao, G. L.; Shi, T. L.; Qian, L. M. Thermal stress-induced fabrication of carbon micro/nanostructures and the application in high-performance enzyme-free glucose sensors. Sens. Actuators B Chem. 2021, 345, 130364.

[20]

Ma, L.; Jiang, F. B.; Fan, X.; Wang, L. Y.; He, C.; Zhou, M.; Li, S.; Luo, H. R.; Cheng, C.; Qiu, L. Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020, 32, 2003065.

[21]

Cao, Y. Z.; Mo, F. Y.; Liu, Y. H.; Liu, Y.; Li, G. P.; Yu, W. Q.; Liu, X. Q. Portable and sensitive detection of non-glucose target by enzyme-encapsulated metal–organic-framework using personal glucose meter. Biosens. Bioelectron. 2022, 198, 113819.

[22]

Han, L.; Zhang, H. J.; Chen, D. Y.; Li, F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 2018, 28, 1800018.

[23]

Huang, Y.; Gu, Y. Q.; Liu, X. Y.; Deng, T. T.; Dai, S.; Qu, J. F.; Yang, G. H.; Qu, L. L. Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosens. Bioelectron. 2022, 209, 114253.

[24]

Dong, W. F.; Chen, G.; Hu, X.; Zhang, X. D.; Shi, W. B.; Fu, Z. F. Molybdenum disulfides nanoflowers anchoring iron-based metal organic framework: A synergetic catalyst with superior peroxidase-mimicking activity for biosensing. Sens. Actuators B Chem. 2020, 305, 127530.

[25]

Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenèche, J.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. ChemComm 2007, 2820–2822.

[26]

Rojas, S.; Horcajada, P. Metal–organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 2020, 120, 8378–8415.

[27]

Chang, S. Q.; Liu, C. C.; Sun, Y. F.; Yan, Z. F.; Zhang, X. H.; Hu, X. D.; Zhang, H. Q. Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal–organic framework MIL-100(Fe) for the catalytic reduction of 4-nitrophenol. ACS Appl. Nano Mater. 2020, 3, 2302–2309.

[28]

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

[29]

Liu, F.; Lin, L.; Zhang, Y.; Wang, Y. B.; Sheng, S.; Xu, C. N.; Tian, H. Y.; Chen, X. S. A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 2019, 31, 1902885.

[30]

Xia, H.; Li, N.; Huang, W. Q.; Song, Y.; Jiang, Y. B. Enzymatic cascade reactions mediated by highly efficient biomimetic quasi metal-organic frameworks. ACS Appl. Mater. Interfaces 2021, 13, 22240–22253.

[31]

Jiang, G. H.; Wang, Z. Y.; Zong, S. F.; Yang, K.; Zhu, K.; Cui, Y. P. Peroxidase-like recyclable SERS probe for the detection and elimination of cationic dyes in pond water. J. Hazard. Mater. 2021, 408, 124426.

[32]

Wang, C. W.; Wang, J. F.; Li, P.; Rong, Z.; Jia, X. F.; Ma, Q. L.; Xiao, R.; Wang, S. Q. Sonochemical synthesis of highly branched flower-like Fe3O4@SiO2@Ag microcomposites and their application as versatile SERS substrates. Nanoscale 2016, 8, 19816–19828.

[33]

Zhang, X. Q.; Zhu, Y. H.; Yang, X. L.; Zhou, Y.; Yao, Y. F.; Li, C. Z. Multifunctional Fe3O4@TiO2@Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering. Nanoscale 2014, 6, 5971–5979.

[34]

Tan, F. C.; Liu, M.; Li, K. Y.; Wang, Y. R.; Wang, J. H.; Guo, X. W.; Zhang, G. L.; Song, C. S. Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chem. Eng. J. 2015, 281, 360–367.

[35]

Li, J. F.; Liu, L.; Ai, Y. J.; Liu, Y.; Sun, H. B.; Liang, Q. L. Self-polymerized dopamine-decorated Au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl. Mater. Interfaces 2020, 12, 5500–5510.

[36]

Song, C. Y.; Li, J. X.; Sun, Y. Z.; Jiang, X. Y.; Zhang, J. J.; Dong, C.; Wang, L. H. Colorimetric/SERS dual-mode detection of mercury ion via SERS-active peroxidase-like Au@AgPt NPs. Sens. Actuators B Chem. 2020, 310, 127849.

[37]

Ma, X. W.; Wen, S. S.; Xue, X. X.; Guo, Y.; Jin, J.; Song, W.; Zhao, B. Controllable synthesis of SERS-active magnetic metal–organic framework-based nanocatalysts and their application in photoinduced enhanced catalytic oxidation. ACS Appl. Mater. Interfaces 2018, 10, 25726–25736.

[38]

Liu, Q.; Yue, X. M.; Li, Y. X.; Wu, F.; Meng, M.; Yin, Y. M.; Xi, R. M. A novel electrochemical aptasensor for exosomes determination and release based on specific host-guest interactions between cucurbit [7]uril and ferrocene. Talanta 2021, 232, 122451.

[39]

Zhu, W.; Wen, B. Y.; Jie, L. J.; Tian, X. D.; Yang, Z. L.; Radjenovic, P. M.; Luo, S. Y.; Tian, Z. Q.; Li, J. F. Rapid and low-cost quantitative detection of creatinine in human urine with a portable Raman spectrometer. Biosens. Bioelectron. 2020, 154, 112067.

Nano Research
Pages 1141-1148
Cite this article:
Jiang G, Yang Z, Zhu K, et al. Universal peroxidase-like strategy for sensitive glucose detection in complex matrix. Nano Research, 2023, 16(1): 1141-1148. https://doi.org/10.1007/s12274-022-4788-2
Topics:

986

Views

10

Crossref

12

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 28 May 2022
Revised: 02 July 2022
Accepted: 17 July 2022
Published: 26 August 2022
© Tsinghua University Press 2022
Return