AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bright and tunable emissive monodisperse CsPbI3@Cs4PbI6 nanocomposites via a precise and controllable dissolution−recrystallization method

Luyu Cao1Bomei Liu2Lin Huang2Zhi Zhou3Chong-Geng Ma4Jian Zhang5Jing Wang1( )
Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
College of Science, Hunan Optical Agriculture Engineering Technology Research Center, Hunan Agricultural University, Changsha 410128, China
CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
Show Author Information

Graphical Abstract

We provide a controllable dissolution–recrystallization method to synthesize emissive “Cs4PbI6” nanocrystals (NCs) from CsPbI3 precursor. Direct and systematic evidences clearly provide the photoluminescence origin comes from embedded CsPbI3 quantum dots (QDs), and the luminescence of this CsPbI3@Cs4PbI6 nanocomposites can be adjusted in a wide range from green to red.

Abstract

Nowadays, due to uncontrolled synthesis and lack of more direct and systematic evidences, the photoluminescence origin of “zero-dimensional” Cs4PbI6 remains great controversy and the luminescence cannot be controlled. Here we propose a controllable dissolution-recrystallization method to synthesize “emissive” and “non-emissive” Cs4PbI6 nanocrystals (NCs) respectively. Through comparing “emissive” and “non-emissive” Cs4PbI6 NCs, it is clearly proved that the visible emission in “emissive” Cs4PbI6 NCs comes from embedded CsPbI3 quantum dots (QDs). It is found for CsPbI3@Cs4PbI6 nanocomposites, methyl acetate (MeAC) and cyclohexane play an important role in dissolution and recrystallization respectively to obtain Cs4PbI6 matrix and CsPbI3 cores. Benefiting from this two-step method, the as-synthesized CsPbI3@Cs4PbI6 nanocomposites with CsPbI3 QDs uniformly distributed in Cs4PbI6 matrix are bright with photoluminescence quantum yield (PLQY) up to 71.4% and exhibit improved stability than CsPbI3 NCs. Moreover, utilizing its formation mechanism, the size of embedded CsPbI3 QDs can be controlled by reasonable designing the “dissolution” process, so that the luminescence of this CsPbI3@Cs4PbI6 nanocomposites can be adjusted in a wide range from green to red (554–630 nm). Our finding not only provides a novel method for synthesizing tunable “emissive” Cs4PbI6 NCs, but also makes clear the photoluminescence origin of “emissive” Cs4PbI6.

Electronic Supplementary Material

Download File(s)
12274_2022_4791_MOESM1_ESM.pdf (1 MB)

References

[1]

Mohammed, O. F. Outstanding challenges of zero-dimensional perovskite materials. J. Phys. Chem. Lett. 2019, 10, 5886–5888.

[2]

Thumu, U.; Piotrowski, M.; Owens-Baird, B.; Kolen’ko, Y. V. Zero-dimensional cesium lead halide perovskites: Phase transformations, hybrid structures, and applications. J. Solid State Chem. 2019, 271, 361–377.

[3]

Akkerman, Q. A.; Abdelhady, A. L.; Manna, L. Zero-dimensional cesium lead halides: History, properties, and challenges. J. Phys. Chem. Lett. 2018, 9, 2326–2337.

[4]

Seth, S.; Samanta, A. Photoluminescence of zero-dimensional perovskites and perovskite-related materials. J. Phys. Chem. Lett. 2018, 9, 176–183.

[5]

Katan, C.; Mercier, N.; Even, J. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 2019, 119, 3140–3192.

[6]

Almutlaq, J.; Yin, J.; Mohammed, O. F.; Bakr, O. M. The benefit and challenges of zero-dimensional perovskites. J. Phys. Chem. Lett. 2018, 9, 4131–4138.

[7]

De Bastiani, M.; Dursun, I.; Zhang, Y. H.; Alshankiti, B. A.; Miao, X. H.; Yin, J.; Yengel, E.; Alarousu, E.; Turedi, B.; Almutlaq, J. M. et al. Inside perovskites: Quantum luminescence from bulk Cs4PbBr6 single crystals. Chem. Mater. 2017, 29, 7108–7113.

[8]

Palazon, F.; Urso, C.; De Trizio, L.; Akkerman, Q.; Marras, S.; Locardi, F.; Nelli, I.; Ferretti, M.; Prato, M.; Manna, L. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Lett. 2017, 2, 2445–2448.

[9]

Lou, S. Q.; Xuan, T. T.; Liang, Q. Y.; Huang, J. J.; Cao, L. Y.; Yu, C. Y.; Cao, M. M.; Xia, C.; Wang, J.; Zhang, D. F. et al. Controllable and facile synthesis of CsPbBr3-Cs4PbBr6 perovskite composites in pure polar solvent. J. Colloid Interface Sci. 2019, 537, 384–388.

[10]

Yin, J.; Yang, H. Z.; Song, K. P.; El-Zohry, A. M.; Han, Y.; Bakr, O. M.; Brédas, J. L.; Mohammed, O. F. Point defects and green emission in zero-dimensional perovskites. J. Phys. Chem. Lett. 2018, 9, 5490–5495.

[11]

Chen, X. M.; Zhang, F.; Ge, Y.; Shi, L. F.; Huang, S.; Tang, J. L.; Lv, Z.; Zhang, L.; Zou, B. S.; Zhong, H. Z. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: Nonstoichiometry induced transformation and light-emitting applications. Adv. Funct. Mater. 2018, 28, 1706567.

[12]

Liu, R. T.; Zhai, X. P.; Zhu, Z. Y.; Sun, B.; Liu, D. W.; Ma, B.; Zhang, Z. Q.; Sun, C. L.; Zhu, B. L.; Zhang, X. D. et al. Disentangling the luminescent mechanism of Cs4PbBr6 single crystals from an ultrafast dynamics perspective. J. Phys. Chem. Lett. 2019, 10, 6572–6577.

[13]

Cha, J. H.; Lee, H. J.; Kim, S. H.; Ko, K. C.; Suh, B. J.; Han, O. H.; Jung, D. Y. Superparamagnetism of green emissive Cs4PbBr6 zero-dimensional perovskite crystals. ACS Energy Lett. 2020, 5, 2208–2216.

[14]

Wang, L. L.; Liu, H.; Zhang, Y. H.; Mohammed, O. F. Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite. ACS Energy Lett. 2020, 5, 87–99.

[15]

Yin, J.; Brédas, J. L.; Bakr, O. M.; Mohammed, O. F. Boosting self-trapped emissions in zero-dimensional perovskite heterostructures. Chem. Mater. 2020, 32, 5036–5043.

[16]

Kondo, S.; Masaki, A.; Saito, T.; Asada, H. Fundamental optical absorption of CsPbI3 and Cs4PbI6. Solid State Commun. 2002, 124, 211–214.

[17]
NiklM.NitschK.SommaF.FabeniP.PazziG. P.FengX. Q. Luminescence of ternary nanoaggregates in CsI-PbI2 thin films J. Lumin200087–8937237410.1016/S0022-2313(99)00399-3

Nikl, M.; Nitsch, K.; Somma, F.; Fabeni, P.; Pazzi, G. P.; Feng, X. Q. Luminescence of ternary nanoaggregates in CsI-PbI2 thin films. J. Lumin 2000, 87–89, 372–374.

[18]

Wu, L. Z.; Hu, H. C.; Xu, Y.; Jiang, S.; Chen, M.; Zhong, Q. X.; Yang, D.; Liu, Q. P.; Zhao, Y.; Sun, B. et al. From nonluminescent Cs4PbX6 (X = Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: Water-triggered transformation through a CsX-stripping mechanism. Nano Lett. 2017, 17, 5799–5804.

[19]

Udayabhaskararao, T.; Houben, L.; Cohen, H.; Menahem, M.; Pinkas, I.; Avram, L.; Wolf, T.; Teitelboim, A.; Leskes, M.; Yaffe, O. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 2018, 30, 84–93.

[20]

Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosconi, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L. Nearly monodisperse insulator Cs4PbX6 (X = Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 NAnocrystals. Nano Lett. 2017, 17, 1924–1930.

[21]

Liu, N. Q.; Sun, R. J.; Wang, L. L.; Ji, Y. C.; Li, N.; Cao, B. Q.; Zhang, Y. H. Unexpected red emission from Cs4PbI6 nanocrystals. J. Mater. Chem. A 2020, 8, 5952–5958.

[22]

Bao, Z.; Hsiu, C. Y.; Fang, M. H.; Majewska, N.; Sun, W. H.; Huang, S. J.; Yuan, E. C. Y.; Chang, Y. C.; Chan, J. C. C.; Mahlik, S. et al. Formation and near-infrared emission of CsPbI3 nanoparticles embedded in Cs4PbI6 crystals. ACS Appl. Mater. Interfaces 2021, 13, 34742–34751.

[23]

Grandhi, G. K.; Viswanath, N. S. M.; In, J. H.; Cho, H. B.; Im, W. B. Robust, brighter red emission from CsPbI3 perovskite nanocrystals via endotaxial protection. J. Phys. Chem. Lett. 2020, 11, 3699–3704.

[24]

Zhao, Q.; Hazarika, A.; Schelhas, L. T.; Liu, J.; Gaulding, E. A.; Li, G. R.; Zhang, M. H.; Toney, M. F.; Sercel, P. C.; Luther, J. M. Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: Negative surface energy for stabilization. ACS Energy Lett. 2020, 5, 238–247.

[25]

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

[26]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[27]

Bhaumik, S.; Bruno, A.; Mhaisalkar, S. Broadband emission from zero-dimensional Cs4PbI6 perovskite nanocrystals. RSC Adv. 2020, 10, 13431–13436.

[28]

Yu, X. Y.; Wu, L. Z.; Hu, H. Z.; Chen, M.; Tan, Y. S.; Yang, D.; Pan, Q.; Zhong, Q. X.; Supasai, T.; Zhang, Q. Cs4PbX6 (X = Cl, Br, I) nanocrystals: preparation, water-triggered transformation behavior, and anti-counterfeiting application. Langmuir 2018, 34, 10363–10370.

[29]

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

[30]

Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

[31]

Yan, K. Y.; Long, M. Z.; Zhang, T. K.; Wei, Z. H.; Chen, H. N.; Yang, S. H.; Xu, J. B. Hybrid halide perovskite solar cell precursors: Colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 2015, 137, 4460–4468.

[32]

Li, B.; Binks, D.; Cao, G. Z.; Tian, J. J. Engineering halide perovskite crystals through precursor chemistry. Small 2019, 15, 1903613.

[33]

Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038.

[34]

Shen, L.; Song, P. Q.; Zheng, L. F.; Liu, K. K.; Lin, K. B.; Tian, W. J.; Luo, Y. J.; Tian, C. B.; Xie, L. Q.; Wei, Z. H. Perovskite-type stabilizers for efficient and stable formamidinium-based lead iodide perovskite solar cells. J. Mater. Chem. A 2021, 9, 20807–20815.

[35]

Stewart, R. J.; Grieco, C.; Larsen, A. V.; Doucette, G. S.; Asbury, J. B. Molecular origins of defects in organohalide perovskites and their influence on charge carrier dynamics. J. Phys. Chem. C 2016, 120, 12392–12402.

[36]

Zhou, N.; Shen, Y. H.; Zhang, Y.; Xu, Z. Q.; Zheng, G. H. J.; Li, L.; Chen, Q.; Zhou, H. P. CsI pre-intercalation in the inorganic framework for efficient and stable FA1−xCsxPbI3(Cl) perovskite solar cells. Small 2017, 13, 1700484.

[37]

Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid-base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

[38]

Li, B.; Dai, Q. L.; Yun, S. N.; Tian, J. J. Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: From aging to degradation. J. Mater. Chem. A 2021, 9, 6732–6748.

[39]

Ahlawat, P.; Dar, M. I.; Piaggi, P.; Grätzel, M.; Parrinello, M.; Rothlisberger, U. Atomistic mechanism of the nucleation of methylammonium lead iodide perovskite from solution. Chem. Mater. 2020, 32, 529–536.

[40]

Yang, R. X.; Tan, L. Z. Understanding size dependence of phase stability and band gap in CsPbI3 perovskite nanocrystals. J Chem Phys. 2020, 152, 034702.

[41]

Sun, J. K.; Huang, S.; Liu, X. Z.; Xu, Q.; Zhang, Q. H.; Jiang, W. J.; Xue, D. J.; Xu, J. C.; Ma, J. Y.; Ding, J. et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires. J. Am. Chem. Soc. 2018, 140, 11705–11715.

[42]

Li, C.; Lu, X. G.; Ding, W. Z.; Feng, L. M.; Gao, Y. H.; Guo, Z. M. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 2008, 64, 702–707.

Nano Research
Pages 1586-1594
Cite this article:
Cao L, Liu B, Huang L, et al. Bright and tunable emissive monodisperse CsPbI3@Cs4PbI6 nanocomposites via a precise and controllable dissolution−recrystallization method. Nano Research, 2023, 16(1): 1586-1594. https://doi.org/10.1007/s12274-022-4791-7
Topics:

1060

Views

7

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 11 June 2022
Revised: 18 July 2022
Accepted: 19 July 2022
Published: 21 August 2022
© Tsinghua University Press 2022
Return