Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Ma, W. J.; Zhan, Y. X.; Zhang, Y. X.; Mao, C. C.; Xie, X. P.; Lin, Y. F. The biological applications of DNA nanomaterials: Current challenges and future directions. Sig. Transduct. Target. Ther. 2021, 6, 351.
Keller, A.; Linko, V. Challenges and perspectives of DNA nanostructures in biomedicine. Angew. Chem., Int. Ed. 2020, 59, 15818–15833.
Shen, L. Y.; Wang, P. F.; Ke, Y. G. DNA nanotechnology-based biosensors and therapeutics. Adv. Healthc. Mater. 2021, 10, e2002205.
Levinthal, C. The mechanism of DNA replication and genetic recombination in phage. Proc. Natl. Acad. Sci. USA 1956, 42, 394–404.
Rich, A. Molecular structure of the nucleic acids. Rev. Mod. Phys. 1959, 31, 191–199.
Rajwar, A.; Kharbanda, S.; Chandrasekaran, A. R.; Gupta, S.; Bhatia, D. Designer, programmable 3D DNA nanodevices to probe biological systems. ACS Appl. Bio Mater. 2020, 3, 7265–7277.
Madsen, M.; Gothelf, K. V. Chemistries for DNA nanotechnology. Chem. Rev. 2019, 119, 6384–6458.
Paukstelis, P. J.; Nowakowski, J.; Birktoft, J. J.; Seeman, N. C. Crystal structure of a continuous three-dimensional DNA lattice. Chem. Biol. 2004, 11, 1119–1126.
Seeman, N. C.; Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 2018, 3, 17068.
Zhang, D. Y.; Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 2011, 3, 103–113.
Kallenbach, N. R.; Ma, R. I.; Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 1983, 305, 829–831.
Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247.
Hong, F.; Zhang, F.; Liu, Y.; Yan, H. DNA origami: Scaffolds for creating higher order structures. Chem. Rev. 2017, 117, 12584–12640.
Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Assembling materials with DNA as the guide. Science 2008, 321, 1795–1799.
Liang, H.; Zhang, X. B.; Lv, Y. F.; Gong, L.; Wang, R. W.; Zhu, X. Y.; Yang, R. H.; Tan, W. H. Functional DNA-containing nanomaterials: Cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res. 2014, 47, 1891–1901.
Xie, S. T.; Ai, L. L.; Cui, C.; Fu, T.; Cheng, X. D.; Qu, F. L.; Tan, W. H. Functional aptamer-embedded nanomaterials for diagnostics and therapeutics. ACS Appl. Mater. Interfaces 2021, 13, 9542–9560.
Qi, H. D.; Xu, Y. W.; Hu, P.; Yao, C.; Yang, D. Y. Construction and applications of DNA-based nanomaterials in cancer therapy. Chin. Chem. Lett. 2022, 33, 1131–1140.
Pinheiro, A. V.; Han, D. R.; Shih, W. M.; Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011, 6, 763–772.
Kwon, P. S.; Ren, S. K.; Kwon, S. J.; Kizer, M. E.; Kuo, L. L.; Xie, M.; Zhu, D.; Zhou, F.; Zhang, F. M.; Kim, D. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 2020, 12, 26–35.
Shaikh, S.; Younis, M.; Yuan, L. D. Functionalized DNA nanostructures for bioimaging. Coord. Chem. Rev. 2022, 469, 214648.
Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 2015, 347, 1260901.
Hendrikse, S. I. S.; Gras, S. L.; Ellis, A. V. Opportunities and challenges in DNA-hybrid nanomaterials. ACS Nano 2019, 13, 8512–8516.
Li, F.; Li, J.; Dong, B. J.; Wang, F.; Fan, C. H.; Zuo, X. L. DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chem. Soc. Rev. 2021, 50, 5650–5667.
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.
Ye, D. K.; Zuo, X. L.; Fan, C. H. DNA nanotechnology-enabled interfacial engineering for biosensor development. Annu. Rev. Anal. Chem. 2018, 11, 171–195.
Hua, Y.; Ma, J. M.; Li, D. C.; Wang, R. D. DNA-based biosensors for the biochemical analysis: A review. Biosensors 2022, 12, 183.
Chen, R. P.; Blackstock, D.; Sun, Q.; Chen, W. Dynamic protein assembly by programmable DNA strand displacement. Nat. Chem. 2018, 10, 474–481.
Yates, L. A.; Aramayo, R. J.; Pokhrel, N.; Caldwell, C. C.; Kaplan, J. A.; Perera, R. L.; Spies, M.; Antony, E.; Zhang, X. D. A structural and dynamic model for the assembly of replication protein A on single-stranded DNA. Nat. Commun. 2018, 9, 5447.
Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556.
Chou, L. Y. T.; Zagorovsky, K.; Chan, W. C. W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 2014, 9, 148–155.
Majewski, P. W.; Michelson, A.; Cordeiro, M. A. L.; Tian, C.; Ma, C. L.; Kisslinger, K.; Tian, Y.; Liu, W. Y.; Stach, E. A.; Yager, K. G. et al. Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Sci. Adv. 2021, 7, eabf0617.
Wang, K. L.; You, M. X.; Chen, Y.; Han, D.; Zhu, Z.; Huang, J.; Williams, K.; Yang, C. J.; Tan, W. H. Self-assembly of a bifunctional DNA carrier for drug delivery. Angew. Chem., Int. Ed. 2011, 50, 6098–6101.
Hu, Q. Q.; Li, H.; Wang, L. H.; Gu, H. Z.; Fan, C. H. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 2019, 119, 6459–6506.
Xu, W. T.; He, W. C.; Du, Z. H.; Zhu, L. Y.; Huang, K. L.; Lu, Y.; Luo, Y. B. Functional nucleic acid nanomaterials: Development, properties, and applications. Angew. Chem., Int. Ed. 2021, 60, 6890–6918.
Li, L. L.; Xing, H.; Zhang, J. J.; Lu, Y. Functional DNA molecules enable selective and stimuli-responsive nanoparticles for biomedical applications. Acc. Chem. Res. 2019, 52, 2415–2426.
Kim, J.; Jang, D.; Park, H.; Jung, S.; Kim, D. H.; Kim, W. J. Functional-DNA-driven dynamic nanoconstructs for biomolecule capture and drug delivery. Adv. Mater. 2018, 30, 1707351.
Bandy, T. J.; Brewer, A.; Burns, J. R.; Marth, G.; Nguyen, T.; Stulz, E. DNA as supramolecular scaffold for functional molecules: Progress in DNA nanotechnology. Chem. Soc. Rev. 2011, 40, 138–148.
Moon, W. J.; Liu, J. W. Interfacing catalytic DNA with nanomaterials. Adv. Mater. Interfaces 2020, 7, 2001017.
Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L. The case for early detection. Nat. Rev. Cancer 2003, 3, 243–252.
Wang, Y.; Liu, X. L.; Wu, L. J.; Ding, L. H.; Effah, C. Y.; Wu, Y. J.; Xiong, Y. M.; He, L. L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens. Bioelectron. 2022, 195, 113661.
Sefah, K.; Shangguan, D. H.; Xiong, X. L.; O’Donoghue, M. B.; Tan, W. H. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185.
Mayer, G.; Ahmed, M. S. L.; Dolf, A.; Endl, E.; Knolle, P. A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 2010, 5, 1993–2004.
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 2007, 24, 381–403.
Yang, G.; Zhu, C.; Zhao, L. P.; Li, L. S.; Huang, Y. Y.; Zhang, Y. K.; Qu, F. Pressure controllable aptamers picking strategy by targets competition. Chin. Chem. Lett. 2021, 32, 218–220.
Ruscito, A.; DeRosa, M. C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Front. Chem. 2016, 4, 14.
Hermann, T.; Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825.
Röthlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Deliv. Rev. 2018, 134, 3–21.
Dunn, M. R.; Jimenez, R. M.; Chaput, J. C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 0076.
Luo, J.; Isaacs, W. B.; Trent, J. M.; Duggan, D. J. Looking beyond morphology: Cancer gene expression profiling using DNA microarrays. Cancer Invest. 2003, 21, 937–949.
Shangguan, D. H.; Li, Y.; Tang, Z. W.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. H. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 2006, 103, 11838–11843.
Yang, X. B.; Li, N.; Gorenstein, D. G. Strategies for the discovery of therapeutic aptamers. Expert Opin. Drug Discov. 2011, 6, 75–87.
Tabarzad, M.; Jafari, M. Trends in the design and development of specific aptamers against peptides and proteins. Protein J. 2016, 35, 81–99.
Teng, I. T.; Li, X. W.; Yadikar, H. A.; Yang, Z. H.; Li, L.; Lyu, Y.; Pan, X. S.; Wang, K. K.; Tan, W. H. Identification and characterization of DNA aptamers specific for phosphorylation epitopes of tau protein. J. Am. Chem. Soc. 2018, 140, 14314–14323.
Wang, Y. J.; Liu, M. Y.; Gao, J. L. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2020, 117, 13967–13974.
Song, Y. L.; Song, J.; Wei, X. Y.; Huang, M. J.; Sun, M.; Zhu, L.; Lin, B. Q.; Shen, H. C.; Zhu, Z.; Yang, C. Y. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem. 2020, 92, 9895–9900.
Ji, D. Y.; Lyu, K. X.; Zhao, H. Z.; Kwok, C. K. Circular L-RNA aptamer promotes target recognition and controls gene activity. Nucleic Acids Res. 2021, 49, 7280–7291.
Liu, M.; Yin, Q. X.; Chang, Y. Y.; Zhang, Q.; Brennan, J. D.; Li, Y. F. In vitro selection of circular DNA aptamers for biosensing applications. Angew. Chem., Int. Ed. 2019, 58, 8013–8017.
Mao, Y.; Gu, J.; Chang, D. R.; Wang, L.; Yao, L. L.; Ma, Q. H.; Luo, Z. F.; Qu, H.; Li, Y. F.; Zheng, L. Evolution of a highly functional circular DNA aptamer in serum. Nucleic Acids Res. 2020, 48, 10680–10690.
Yoshikawa, A. M.; Rangel, A.; Feagin, T.; Chun, E. M.; Wan, L.; Li, A. P.; Moeckl, L.; Wu, D. N.; Eisenstein, M.; Pitteri, S. et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 2021, 12, 7106.
Cheung, Y. W.; Röthlisberger, P.; Mechaly, A. E.; Weber, P.; Levi-Acobas, F.; Lo, Y.; Wong, A. W. C.; Kinghorn, A. B.; Haouz, A.; Savage, G. P. et al. Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc. Natl. Acad. Sci. USA 2020, 117, 16790–16798.
Tan, J.; Zhao, M. M.; Wang, J.; Li, Z. H.; Liang, L.; Zhang, L. Q.; Yuan, Q.; Tan, W. H. Regulation of protein activity and cellular functions mediated by molecularly evolved nucleic acids. Angew. Chem., Int. Ed. 2019, 58, 1621–1625.
Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.
Lin, Y. H.; Ren, J. S.; Qu, X. G. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater. 2014, 26, 4200–4217.
Yu, Z. Z.; Lou, R. X.; Pan, W.; Li, N.; Tang, B. Nanoenzymes in disease diagnosis and therapy. Chem. Commun. 2020, 56, 15513–15524.
Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, e1805368.
Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, 2002343.
Li, S. S.; Shang, L.; Xu, B. L.; Wang, S. H.; Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 12624–12631.
Breaker, R. R.; Joyce, G. F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994, 1, 223–229.
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
Liu, K.; Lat, P. K.; Yu, H. Z.; Sen, D. Click-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide-alkyne “click” reaction in water. Nucleic Acids Res. 2020, 48, 7356–7370.
Ali, M. M.; Wolfe, M.; Tram, K.; Gu, J.; Filipe, C. D. M.; Li, Y. F.; Brennan, J. D. A DNAzyme-based colorimetric paper sensor for Helicobacter pylori. Angew. Chem., Int. Ed. 2019, 58, 9907–9911.
Wang, Y. J.; Nguyen, K.; Spitale, R. C.; Chaput, J. C. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 2021, 13, 319–326.
Wei, Z. H.; Yu, Y. F.; Hu, S. Q.; Yi, X. Y.; Wang, J. X. Bifunctional diblock DNA-mediated synthesis of nanoflower-shaped photothermal nanozymes for a highly sensitive colorimetric assay of cancer cells. ACS Appl. Mater. Interfaces 2021, 13, 16801–16811.
Li, K.; Wang, K.; Qin, W. W.; Deng, S. H.; Li, D.; Shi, J. Y.; Huang, Q.; Fan, C. H. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J. Am. Chem. Soc. 2015, 137, 4292–4295.
Satyavolu, N. S. R.; Tan, L. H.; Lu, Y. DNA-mediated morphological control of Pd-Au bimetallic nanoparticles. J. Am. Chem. Soc. 2016, 138, 16542–16548.
Lu, C.; Tang, L. H.; Gao, F.; Li, Y. Z.; Liu, J. W.; Zheng, J. K. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157: H7. Biosens. Bioelectron 2021, 187, 113327.
Zhang, Y.; Chan, H. F.; Leong, K. W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013, 65, 104–120.
Khezri, B.; Beladi Mousavi, S. M.; Krejčová, L.; Heger, Z.; Sofer, Z.; Pumera, M. Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv. Funct. Mater. 2019, 29, 1806696.
Shen, S. H.; Wu, Y. S.; Liu, Y. C.; Wu, D. C. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085–4109.
Han, S. Y.; Samanta, A.; Xie, X. J.; Huang, L.; Peng, J. J.; Park, S. J.; Teh, D. B. L.; Choi, Y.; Chang, Y. T.; All, A. H. et al. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery. Adv. Mater. 2017, 29, 1700244.
Li, J.; Fan, C. H.; Pei, H.; Shi, J. Y.; Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 2013, 25, 4386–4396.
Zhang, H. M.; Ma, Y. L.; Xie, Y.; An, Y.; Huang, Y. S.; Zhu, Z.; Yang, C. J. A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci. Rep. 2015, 5, 10099.
Roberts, T. C.; Langer, R.; Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 2020, 19, 673–694.
Venkataraman, S.; Hedrick, J. L.; Ong, Z. Y.; Yang, C.; Ee, P. L. R.; Hammond, P. T.; Yang, Y. Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 1228–1246.
Shao, Y.; Jia, H. Y.; Cao, T. Y.; Liu, D. S. Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res. 2017, 50, 659–668.
Huang, F. J.; Chen, M. X.; Zhou, Z. X.; Duan, R. L.; Xia, F.; Willner, I. Spatiotemporal patterning of photoresponsive DNA-based hydrogels to tune local cell responses. Nat. Commun. 2021, 12, 2364.
Zhang, J.; Guo, Y. Y.; Pan, G. F.; Wang, P.; Li, Y. H.; Zhu, X. Y.; Zhang, C. Injectable drug-conjugated DNA hydrogel for local chemotherapy to prevent tumor recurrence. ACS Appl. Mater. Interfaces 2020, 12, 21441–21449.
Hu, Y. W.; Gao, S. J.; Lu, H. F.; Ying, J. Y. Acid-resistant and physiological pH-responsive DNA hydrogel composed of A-motif and i-motif toward oral insulin delivery. J. Am. Chem. Soc. 2022, 144, 5461–5470.
Ding, F.; Mou, Q. B.; Ma, Y.; Pan, G. F.; Guo, Y. Y.; Tong, G. S.; Choi, C. H. J.; Zhu, X. Y.; Zhang, C. A crosslinked nucleic acid nanogel for effective siRNA delivery and antitumor therapy. Angew. Chem., Int. Ed. 2018, 57, 3064–3068.
Zhang, J.; Guo, Y. Y.; Ding, F.; Pan, G. F.; Zhu, X. Y.; Zhang, C. A camptothecin-grafted DNA tetrahedron as a precise nanomedicine to inhibit tumor growth. Angew. Chem., Int. Ed. 2019, 58, 13794–13798.
Xiao, D. X.; Li, Y. J.; Tian, T. R.; Zhang, T. X.; Shi, S. R.; Lu, B. Y.; Gao, Y.; Qin, X.; Zhang, M.; Wei, W. et al. Tetrahedral framework nucleic acids loaded with aptamer AS1411 for siRNA delivery and gene silencing in malignant melanoma. ACS Appl. Mater. Interfaces 2021, 13, 6109–6118.
Fu, W.; Ma, L.; Ju, Y.; Xu, J. G.; Li, H.; Shi, S. R.; Zhang, T.; Zhou, R. H.; Zhu, J. W.; Xu, R. et al. Therapeutic siCCR2 loaded by tetrahedral framework DNA nanorobotics in therapy for intracranial hemorrhage. Adv. Funct. Mater. 2021, 31, 2101435.
Wang, D.; Peng, R. Z.; Peng, Y. B.; Deng, Z. Y.; Xu, F. Y.; Su, Y. Y.; Wang, P. E.; Li, L.; Wang, X. Q.; Ke, Y. G. et al. Hierarchical fabrication of DNA wireframe nanoarchitectures for efficient cancer imaging and targeted therapy. ACS Nano 2020, 14, 17365–17375.
Wang, Z. R.; Song, L. L.; Liu, Q.; Tian, R.; Shang, Y. X.; Liu, F. S.; Liu, S. L.; Zhao, S.; Han, Z. H.; Sun, J. S. et al. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem., Int. Ed. 2021, 60, 2594–2598.
Zhang, L. L.; Abdullah, R.; Hu, X. X.; Bai, H. R.; Fan, H. H.; He, L.; Liang, H.; Zou, J. M.; Liu, Y. L.; Sun, Y. et al. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base. J. Am. Chem. Soc. 2019, 141, 4282–4290.
Willem de Vries, J.; Schnichels, S.; Hurst, J.; Strudel, L.; Gruszka, A.; Kwak, M.; Bartz-Schmidt, K. U.; Spitzer, M. S.; Herrmann, A. DNA nanoparticles for ophthalmic drug delivery. Biomaterials 2018, 157, 98–106.
Shang, Y. X.; Li, N.; Liu, S. B.; Wang, L.; Wang, Z. G.; Zhang, Z.; Ding, B. Q. Site-specific synthesis of silica nanostructures on DNA origami templates. Adv. Mater. 2020, 32, 2000294.
Dey, S.; Fan, C. H.; Gothelf, K. V.; Li, J.; Lin, C. X.; Liu, L. F.; Liu, N.; Nijenhuis, M. A. D.; Saccà, B.; Simmel, F. C. et al. DNA origami. Nat. Rev. Methods Primers 2021, 1, 13.
Tokura, Y.; Jiang, Y. Y.; Welle, A.; Stenzel, M. H.; Krzemien, K. M.; Michaelis, J.; Berger, R.; Barner-Kowollik, C.; Wu, Y. Z.; Weil, T. Bottom-up fabrication of nanopatterned polymers on DNA origami by in situ atom-transfer radical polymerization. Angew. Chem., Int. Ed. 2016, 55, 5692–5697.
Fan, S. S.; Wang, D. F.; Kenaan, A.; Cheng, J.; Cui, D. X.; Song, J. Create nanoscale patterns with DNA origami. Small 2019, 15, 1805554.
Li, N.; Shang, Y. X.; Xu, R.; Jiang, Q.; Liu, J. B.; Wang, L.; Cheng, Z. H.; Ding, B. Q. Precise organization of metal and metal oxide nanoclusters into arbitrary patterns on DNA origami. J. Am. Chem. Soc. 2019, 141, 17968–17972.
Jun, H.; Zhang, F.; Shepherd, T.; Ratanalert, S.; Qi, X. D.; Yan, H.; Bathe, M. Autonomously designed free-form 2D DNA origami. Sci. Adv. 2019, 5, eaav0655.
Edwardson, T. G. W.; Lau, K. L.; Bousmail, D.; Serpell, C. J.; Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 2016, 8, 162–170.
Shi, P.; Zhao, N.; Coyne, J.; Wang, Y. DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nat. Commun. 2019, 10, 2223.
Storhoff, J. J.; Mirkin, C. A. Programmed materials synthesis with DNA. Chem. Rev. 1999, 99, 1849–1862.
Zhao, H. W.; Liu, S. J.; Wei, Y.; Yue, Y. H.; Gao, M. R.; Li, Y. B.; Zeng, X. L.; Deng, X. L.; Kotov, N. A.; Guo, L. et al. Multiscale engineered artificial tooth enamel. Science, 2022, 375, 551–556.
Zhou, Y. S.; Deng, J. J.; Zhang, Y.; Li, C.; Wei, Z.; Shen, J. L.; Li, J. J.; Wang, F.; Han, B.; Chen, D. et al. Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications. Adv. Mater. 2022, 34, 2202180.
Wu, S. S.; Zhang, M. Z.; Song, J.; Weber, S.; Liu, X. G.; Fan, C. H.; Wu, Y. Z. Fine customization of calcium phosphate nanostructures with site-specific modification by DNA templated mineralization. ACS Nano 2021, 15, 1555–1565.
Tokura, Y.; Harvey, S.; Chen, C. J.; Wu, Y. Z.; Ng, D. Y. W.; Weil, T. Fabrication of defined polydopamine nanostructures by DNA origami-templated polymerization. Angew. Chem., Int. Ed. 2018, 130, 1603–1607.
Winterwerber, P.; Harvey, S.; Ng, D. Y. W.; Weil, T. Photocontrolled dopamine polymerization on DNA origami with nanometer resolution. Angew. Chem., Int. Ed. 2020, 59, 6144–6149.
Yang, Y.; Wang, J.; Shigematsu, H.; Xu, W. M.; Shih, W. M.; Rothman, J. E.; Lin, C. X. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 2016, 8, 476–483.
Zhang, Z.; Yang, Y.; Pincet, F.; Llaguno, M. C.; Lin, C. X. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 2017, 9, 653–659.
Perrault, S. D.; Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 2014, 8, 5132–5140.
Kurokawa, C.; Fujiwara, K.; Morita, M.; Kawamata, I.; Kawagishi, Y.; Sakai, A.; Murayama, Y.; Nomura, S. I. M.; Murata, S.; Takinoue, M. et al. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl. Acad. Sci. USA 2017, 114, 7228–7233.
Nummelin, S.; Kommeri, J.; Kostiainen, M. A.; Linko, V. Evolution of structural DNA nanotechnology. Adv. Mater. 2018, 30, 1703721.
Jiang, D. W.; England, C. G.; Cai, W. B. DNA nanomaterials for preclinical imaging and drug delivery. J. Control. Release 2016, 239, 27–38.
Meng, H. M.; Liu, H.; Kuai, H. L.; Peng, R. Z.; Mo, L. T.; Zhang, X. B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 2016, 45, 2583–2602.
Zhang, J. J.; Lan, T.; Lu, Y. Molecular engineering of functional nucleic acid nanomaterials toward in vivo applications. Adv. Healthcare Mater. 2019, 8, 1801158.
Zhang, Y. Z.; Tu, J.; Wang, D. Q.; Zhu, H. T.; Maity, S. K.; Qu, X. M.; Bogaert, B.; Pei, H.; Zhang, H. B. Programmable and multifunctional DNA-based materials for biomedical applications. Adv. Mater. 2018, 30, 1703658.
Du, Y.; Dong, S. J. Nucleic acid biosensors: Recent advances and perspectives. Anal. Chem. 2017, 89, 189–215.
Xiao, M. S.; Lai, W.; Man, T. T.; Chang, B. B.; Li, L.; Chandrasekaran, A. R.; Pei, H. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev. 2019, 119, 11631–11717.
Yang, F.; Li, Q.; Wang, L. H.; Zhang, G. J.; Fan, C. H. Framework-nucleic-acid-enabled biosensor development. ACS Sens. 2018, 3, 903–919.
Li, H. K.; Ye, H. L.; Zhao, X. X.; Sun, X. L.; Zhu, Q. Q.; Han, Z. Y.; Yuan, R. R.; He, H. M. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. Chin. Chem. Lett. 2021, 32, 2851–2855.
Song, P.; Li, M.; Shen, J. W.; Pei, H.; Chao, J.; Su, S.; Aldalbahi, A.; Wang, L. H.; Shi, J. Y.; Song, S. P. et al. Dynamic modulation of DNA hybridization using allosteric DNA tetrahedral nanostructures. Anal. Chem. 2016, 88, 8043–8049.
Chang, D. R.; Zakaria, S.; Esmaeili Samani, S.; Chang, Y. Y.; Filipe, C. D. M.; Soleymani, L.; Brennan, J. D.; Liu, M.; Li, Y. F. Functional nucleic acids for pathogenic bacteria detection. Acc. Chem. Res. 2021, 54, 3540–3549.
Zhu, X. Y.; Wang, R. Y.; Zhou, X. H.; Shi, H. C. Free-energy-driven lock/open assembly-based optical DNA sensor for cancer-related microRNA detection with a shortened time-to-result. ACS Appl. Mater. Interfaces 2017, 9, 25789–25795.
Xiao, M. S.; Wang, X. W.; Li, L.; Pei, H. Stochastic RNA walkers for intracellular MicroRNA imaging. Anal. Chem. 2019, 91, 11253–11258.
Xiao, M. S.; Zou, K.; Li, L.; Wang, L. H.; Tian, Y.; Fan, C. H.; Pei, H. Stochastic DNA walkers in droplets for super-multiplexed bacterial phenotype detection. Angew. Chem., Int. Ed. 2019, 58, 15448–15454.
Ebrahimi, S. B.; Samanta, D.; Mirkin, C. A. DNA-based nanostructures for live-cell analysis. J. Am. Chem. Soc. 2020, 142, 11343–11356.
Chai, H.; Miao, P. Ultrasensitive assay of ctDNA based on DNA triangular prism and three-way junction nanostructures. Chin. Chem. Lett. 2021, 32, 783–786.
Zhang, J.; Hou, M. F.; Chen, G. Y.; Mao, H. F.; Chen, W. Q.; Wang, W. S.; Chen, J. H. An electrochemical biosensor based on DNA “nano-bridge” for amplified detection of exosomal microRNAs. Chin. Chem. Lett. 2021, 32, 3474–3478.
Liu, J. M.; Zhang, Y.; Xie, H. B.; Zhao, L.; Zheng, L.; Ye, H. M. Applications of catalytic hairpin assembly reaction in biosensing. Small 2019, 15, 1902989.
Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191.
Zhan, S. S.; Wu, Y. G.; Wang, L. M.; Zhan, X. J.; Zhou, P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016, 86, 353–368.
Duan, Z. J.; Tan, L. X.; Duan, R. L.; Chen, M. X.; Xia, F.; Huang, F. J. Photoactivated biosensing process for dictated ATP detection in single living cells. Anal. Chem. 2021, 93, 11547–11556.
Zhu, D.; Wei, Y. Q.; Sun, T.; Zhang, C. W.; Ang, L.; Su, S.; Mao, X. H.; Li, Q.; Fan, C. H.; Zuo, X. L. et al. Encoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAs. Anal. Chem. 2021, 93, 2226–2234.
Wang, X. J.; Kong, D. R.; Guo, M. Q.; Wang, L. Q.; Gu, C. J.; Dai, C. H.; Wang, Y.; Jiang, Q. F.; Ai, Z. L.; Zhang, C. et al. Rapid SARS-CoV-2 nucleic acid testing and pooled assay by tetrahedral DNA nanostructure transistor. Nano Lett. 2021, 21, 9450–9457.
Wu, Y. G.; Ji, D. Z.; Dai, C. H.; Kong, D. R.; Chen, Y. H.; Wang, L. Q.; Guo, M. Q.; Liu, Y. Q.; Wei, D. C. Triple-probe DNA framework-based transistor for SARS-CoV-2 10-in-1 pooled testing. Nano Lett. 2022, 22, 3307–3316.
Shyu, A. B.; Wilkinson, M. F.; van Hoof, A. Messenger RNA regulation: To translate or to degrade. EMBO J. 2008, 27, 471–481.
He, L.; Lu, D. Q.; Liang, H.; Xie, S. T.; Luo, C.; Hu, M. M.; Xu, L. J.; Zhang, X. B.; Tan, W. H. Fluorescence resonance energy transfer-based DNA tetrahedron nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano 2017, 11, 4060–4066.
Bushati, N.; Cohen, S. M. microRNA functions. Annu. Rev. Cell. Dev. Biol. 2007, 23, 175–205.
Lu, T. X.; Rothenberg, M. E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207.
Zhu, D.; Huang, J. X.; Lu, B.; Zhu, Y.; Wei, Y. Q.; Zhang, Q.; Guo, X. X.; Yuwen, L. H.; Su, S.; Chao, J. et al. Intracellular microRNA imaging with MoS2-supported nonenzymatic catassembly of DNA hairpins. ACS Appl. Mater. Interfaces 2019, 11, 20725–20733.
Zhou, W. J.; Li, D. X.; Xiong, C. Y.; Yuan, R.; Xiang, Y. Multicolor-encoded reconfigurable DNA nanostructures enable multiplexed sensing of intracellular microRNAs in living cells. ACS Appl. Mater. Interfaces 2016, 8, 13303–13308.
Chen, B.; Wang, Y. T.; Ma, W. J.; Cheng, H.; Sun, H. H.; Wang, H. Z.; Huang, J.; He, X. X.; Wang, K. M. A mimosa-inspired cell-surface-anchored ratiometric DNA nanosensor for high-resolution and sensitive response of target tumor extracellular pH. Anal. Chem. 2020, 92, 15104–15111.
Zhao, J.; Gao, J. H.; Xue, W. T.; Di, Z. H.; Xing, H.; Lu, Y.; Li, L. L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc. 2018, 140, 578–581.
Shao, Y. L.; Zhao, J.; Yuan, J. Y.; Zhao, Y. L.; Li, L. L. Organelle-specific photoactivation of DNA nanosensors for precise profiling of subcellular enzymatic activity. Angew. Chem., Int. Ed. 2021, 60, 8923–8931.
Jani, M. S.; Zou, J. Y.; Veetil, A. T.; Krishnan, Y. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat. Chem. Biol. 2020, 16, 660–666.
Ahmed, R.; Oborski, M. J.; Hwang, M.; Lieberman, F. S.; Mountz, J. M. Malignant gliomas: Current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag. Res. 2014, 6, 149–170.
Pei, H.; Zuo, X. L.; Zhu, D.; Huang, Q.; Fan, C. H. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 2014, 47, 550–559.
Tan, J.; Li, H.; Ji, C. L.; Zhang, L.; Zhao, C. X.; Tang, L. M.; Zhang, C. X.; Sun, Z. J.; Tan, W. H.; Yuan, Q. Electron transfer-triggered imaging of EGFR signaling activity. Nat. Commun. 2022, 13, 594.
Li, L. L.; Wu, P. W.; Hwang, K.; Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 2013, 135, 2411–2414.
Zhong, L.; Cai, S. X.; Huang, Y. Q.; Yin, L. T.; Yang, Y. L.; Lu, C. H.; Yang, H. H. DNA octahedron-based fluorescence nanoprobe for dual tumor-related mRNAs detection and imaging. Anal. Chem. 2018, 90, 12059–12066.
Xiao, F.; Lin, L.; Chao, Z. C.; Shao, C.; Chen, Z.; Wei, Z. X.; Lu, J. X.; Huang, Y. S.; Li, L. Q.; Liu, Q. et al. Organic spherical nucleic acids for the transport of a NIR-II-emitting dye across the blood-brain barrier. Angew. Chem., Int. Ed. 2020, 59, 9702–9710.
Tao, X. Q.; Liao, Z. Y.; Zhang, Y. Q.; Fu, F.; Hao, M. Q.; Song, Y.; Song, E. Q. Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. Chin. Chem. Lett. 2021, 32, 791–795.
Ma, Y. X.; Mao, G. B.; Huang, W. R.; Wu, G. Q.; Yin, W.; Ji, X. H.; Deng, Z. S.; Cai, Z. M.; Zhang, X. E.; He, Z. K. et al. Quantum dot nanobeacons for single RNA labeling and imaging. J. Am. Chem. Soc. 2019, 141, 13454–13458.
Zhou, W.; Han, Y.; Beliveau, B. J.; Gao, X. H. Combining Qdot nanotechnology and DNA nanotechnology for sensitive single-cell imaging. Adv. Mater. 2020, 32, 1908410.
Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 2009, 9, 3258–3261.
Wang, W. J.; Satyavolu, N. S. R.; Wu, Z. K.; Zhang, J. R.; Zhu, J. J.; Lu, Y. Near-infrared photothermally activated DNAzyme-gold nanoshells for imaging metal ions in living cells. Angew. Chem., Int. Ed. 2017, 56, 6798–6802.
Lin, Y.; Yang, Z. L.; Lake, R. J.; Zheng, C. B.; Lu, Y. Enzyme-mediated endogenous and bioorthogonal control of a DNAzyme fluorescent sensor for imaging metal ions in living cells. Angew. Chem., Int. Ed. 2019, 58, 17061–17067.
Peng, H. Y.; Li, X. F.; Zhang, H. Q.; Le, X. C. A microRNA-initiated DNAzyme motor operating in living cells. Nat. Commun. 2017, 8, 14378.
Gao, Y. S.; Zhang, S. B.; Wu, C. W.; Li, Q.; Shen, Z. F.; Lu, Y.; Wu, Z. S. Self-protected DNAzyme walker with a circular bulging DNA shield for amplified imaging of miRNAs in living cells and mice. ACS Nano 2021, 15, 19211–19224.
Wang, Q.; Tan, K. Y.; Wang, H.; Shang, J. H.; Wan, Y. Q.; Liu, X. Q.; Weng, X. C.; Wang, F. A. Orthogonal demethylase-activated deoxyribozyme for intracellular imaging and gene regulation. J. Am. Chem. Soc. 2021, 143, 6895–6904.
Angell, C.; Xie, S. B.; Zhang, L. F.; Chen, Y. DNA nanotechnology for precise control over drug delivery and gene therapy. Small 2016, 12, 1117–1132.
Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.
Cheng, R.; Meng, F. H.; Deng, C.; Klok, H. A.; Zhong, Z. Y. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34, 3647–3657.
Dai, Z. W.; Leung, H. M.; Lo, P. K. Stimuli-responsive self-assembled DNA nanomaterials for biomedical applications. Small 2017, 13, 1602881.
Lu, C. H.; Willner, B.; Willner, I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACS Nano 2013, 7, 8320–8332.
Yuan, Y.; Gu, Z.; Yao, C.; Luo, D.; Yang, D. Y. Nucleic acid-based functional nanomaterials as advanced cancer therapeutics. Small 2019, 15, 1900172.
Ouyang, C. H.; Zhang, S. B.; Xue, C.; Yu, X.; Xu, H.; Wang, Z. M.; Lu, Y.; Wu, Z. S. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J. Am. Chem. Soc. 2020, 142, 1265–1277.
Yang, L.; Sun, H.; Liu, Y.; Hou, W. J.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P. H.; Pan, X. S.; Li, X. W. et al. Self-assembled aptamer-grafted hyperbranched polymer nanocarrier for targeted and photoresponsive drug delivery. Angew. Chem., Int. Ed. 2018, 57, 17048–17052.
Zhuang, X. X.; Ma, X. W.; Xue, X. D.; Jiang, Q.; Song, L. L.; Dai, L. R.; Zhang, C. Q.; Jin, S. B.; Yang, K. N.; Ding, B. Q. et al. A photosensitizer-loaded DNA origami nanosystem for photodynamic therapy. ACS Nano 2016, 10, 3486–3495.
Wu, T. T.; Liu, J. B.; Liu, M. M.; Liu, S. L.; Zhao, S.; Tian, R.; Wei, D. S.; Liu, Y. Z.; Zhao, Y.; Xiao, H. H. et al. A nanobody-conjugated DNA nanoplatform for targeted platinum-drug delivery. Angew. Chem., Int. Ed. 2019, 58, 14224–14228.
Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.
Chen, G.; Liu, D.; He, C. B.; Gannett, T. R.; Lin, W. B.; Weizmann, Y. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. J. Am. Chem. Soc. 2015, 137, 3844–3851.
Liu, J. B.; Song, L. L.; Liu, S. L.; Jiang, Q.; Liu, Q.; Li, N.; Wang, Z. G.; Ding, B. Q. A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy. Nano Lett. 2018, 18, 3328–3334.
Liu, Q. L.; Bi, C.; Li, J. L.; Liu, X. J.; Peng, R. Z.; Jin, C.; Sun, Y.; Lyu, Y. F.; Liu, H.; Wang, H. J. et al. Generating giant membrane vesicles from live cells with preserved cellular properties. Research (Wash D C) 2019, 2019, 6523970.
Luo, C.; Hu, X. X.; Peng, R. Z.; Huang, H. D.; Liu, Q. L.; Tan, W. H. Biomimetic carriers based on giant membrane vesicles for targeted drug delivery and photodynamic/photothermal synergistic therapy. ACS Appl. Mater. Interfaces 2019, 11, 43811–43819.