AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective adsorption of liquid long-chain α-olefin/paraffin on Mg-MOF-74: Adsorption behavior and interaction mechanism

Ruihan Yang1Shafqat Ullah1Xiao Chen2Junxiang Ma3Yuan Gao3Yujun Wang1( )Guangsheng Luo1
State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Lu’an Chemical Group Co., Ltd., Changzhi 046299, China
Show Author Information

Graphical Abstract

The selective adsorption performance, adsorption sites, and different interaction contributions of liquid longchain α-olefin/paraffin on Mg-metal–organic framework (MOF)-74 are investigated using a combination of batch adsorption experiments and molecular simulation techniques, which provides a general method and guidance for liquid adsorption separation and host-guest interactions during the adsorption or catalytic process of nanoporous materials.

Abstract

The liquid products of Fischer–Tropsch synthesis with a high content of linear α-olefins can act as valuable raw materials for increasing high added-value α-olefin production if the challenging separation of long-chain α-olefin/paraffin is achieved. Adsorption separation is an efficient alternative to energy-intensive distillation. Herein, the selective adsorption behavior and interaction mechanism of liquid α-olefin/paraffin on Mg metal–organic framework (MOF)-74 were investigated using a combination of batch adsorption experiments and molecular simulation techniques. Mg-MOF-74 exhibited 301 and 333 mg/g olefin adsorption capacities for C6 and C8 linear α-olefins in binary olefin/paraffin mixtures, respectively, and was still unsaturated at high olefin concentrations. The adsorption isotherms were analyzed and compared with the simulated results by configurational-bias grand canonical Monte Carlo (CB-GCMC) simulation. The visualized adsorption sites by CB-GCMC simulation indicated that all adsorbates were arranged in hexagonal shapes and preferentially adsorbed by the vertex of the hexagon, where the metal node magnesium is located. The adsorption energies were −1.456 and −0.378 eV for C8 linear α-olefin and paraffin, respectively, calculated by density functional theory simulation based on the visualized adsorption sites. The charge transfer was analyzed, and the contributions of different kinds of interactions to the overall adsorption energy were quantified by principle orbital interaction analysis to further reveal the difference in adsorption energy between α-olefin/paraffin and Mg-MOF-74. This work also provides a general means to investigate the liquid adsorption performance and host–guest interactions in the adsorption or catalytic processes of nanoporous materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4796_MOESM1_ESM.pdf (413 KB)

References

[1]

Gollwitzer, A.; Dietel, T.; Kretschmer, W. P.; Kempe, R. A broadly tunable synthesis of linear α-olefins. Nat. Commun. 2017, 8, 1226.

[2]

Golub, F. S.; Bolotov, V. A.; Parmon, V. N. Modern trends in the processing of linear alpha olefins to technologically important products. Part 1. Katal. Promyshlennosti 2020, 20, 433–455.

[3]

Li, H.; Zhang, Z. S.; Sun, G. L.; Liu, S. L.; An, L. C.; Li, X. G.; Li, H.; Gao, X. Performance and mechanism of the separation of C8 α-olefin from F–T synthesis products using novel Ag-DES. AIChE J. 2021, 67, e17252.

[4]
Global Alpha olefins market research report- information by type (1-butene, 1-hexene, 1-octene, 1-decene and others), by application (polyolefin comonomer, plasticizer, lubricant, surfactant, drilling machinery fuel, and others) and region-forecast till 2030 [Online]. https://www.marketresearchfuture.com/reports/alpha-olefins-market-4877# (accessed 10 Aug, 2022).
[5]
IHS Markit's Chemical Economics Handbook-Linear Alpha-Olefins [Online].https://ihsmarkit.com/products/linear-alpha-olefins-chemical-economics-handbook.html (accessed 15 Feb, 2020).
[6]

Torshizi, H. O.; Pour, A. N.; Mohammadi, A.; Zamani, Y.; Shahri, S. M. K. Fischer–Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of support and metal nanoparticle size on catalyst activity and products selectivity. Front. Chem. Sci. Eng. 2021, 15, 299–309.

[7]

Wentink, A. E.; Kuipers, N. J. M.; De Haan, A. B.; Scholtz, J.; Mulder, H. Olefin isomer separation by reactive extractive distillation: Modelling of vapour-liquid equilibria and conceptual design for 1-hexene purification. Chem. Eng. Process. 2007, 46, 800–809.

[8]

Ma, Y. F.; Xu, J.; Jiang, H. Z.; Li, J. S. Low viscosity PAO preparation by oligomerization of alpha-olefin from coal with metallocene catalyst. Pet. Proc. Petrochem. 2016, 47, 32–36.

[9]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[10]

Saha, D.; Toof, B.; Krishna, R.; Orkoulas, G.; Gismondi, P.; Thorpe, R.; Comroe, M. L. Separation of ethane-ethylene and propane-propylene by Ag(I) doped and sulfurized microporous carbon. Microporous Mesoporous Mater. 2020, 299, 110099.

[11]

Wentink, A. E.; Kockmann, D.; Kuipers, N. J. M.; De Haan, A. B.; Scholtz, J.; Mulder, H. Effect of C6-olefin isomers on π-complexation for purification of 1-hexene by reactive extractive distillation. Sep. Purif. Technol. 2005, 43, 149–162.

[12]
Berg, L. Separation of 1-octene from octane by azeotropic distillation. U. S. Patent 5382330A, Jan 17, 1995.
[13]
Piszczek, R.; Heins, B.; Hamilton, P.; Osby, T.; Zhang, D.; Wang, Z. C.; Hergenrother, M.; Nichols, J. Process for the Separation of Linear alpha-Olefins Using a Dividing Wall Column. WIPO|PCT. WO 2020/114744 A1, June 11, 2020.
[14]

Wang, Y.; Hao, W. Y.; Jacquemin, J.; Goodrich, P.; Atilhan, M.; Khraisheh, M.; Rooney, D.; Thompson, J. Enhancing liquid-phase olefin-paraffin separations using novel silver-based ionic liquids. J. Chem. Eng. Data 2015, 60, 28–36.

[15]

Faiz, R.; Li, K. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 2012, 73, 261–284.

[16]

Ashtiani, S.; Sofer, Z.; Průša, F.; Friess, K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep. Purif. Technol. 2021, 274, 119003.

[17]

Hartmann, M.; Böhme, U.; Hovestadt, M.; Paula, C. Adsorptive separation of olefin/paraffin mixtures with ZIF-4. Langmuir 2015, 31, 12382–12389.

[18]

Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, Q. L.; Chen, B. L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 2016, 9, 3612–3641.

[19]

Sun, H.; Ren, D. N.; Kong, R. Q.; Wang, D.; Jiang, H.; Tan, J. L.; Wu, D.; Chen, S. W.; Shen, B. X. Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co–Mg bimetallic frameworks. Microporous Mesoporous Mater. 2019, 284, 151–160.

[20]

Luna-Triguero, A.; Sławek, A.; Sánchez-de-Armas, R.; Gutiérrez-Sevillano, J. J.; Ania, C. O.; Parra, J. B.; Vicent-Luna, J. M.; Calero, S. π-Complexation for olefin/paraffin separation using aluminosilicates. Chem. Eng. J. 2020, 380, 122482.

[21]

Saha, D.; Orkoulas, G.; Yohannan, S.; Ho, H. C.; Cakmak, E.; Chen, J. H.; Ozcan, S. Nanoporous boron nitride as exceptionally thermally stable adsorbent: Role in efficient separation of light hydrocarbons. ACS Appl. Mater. Interfaces 2017, 9, 14506–14517.

[22]

Bryan, P. F. Removal of propylene from fuel-grade propane. Sep. Purif. Rev. 2004, 33, 157–182.

[23]

Mofarahi, M.; Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 2013, 19, 101–110.

[24]

Divekar, S.; Nanoti, A.; Dasgupta, S.; Aarti; Chauhan, R.; Gupta, P.; Garg, M. O.; Singh, S. P.; Mishra, I. M. Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory. J. Chem. Eng. Data 2016, 61, 2629–2637.

[25]

Grande, C. A.; Lind, A.; Vistad, Ø.; Akporiaye, D. Olefin-paraffin separation using calcium-ETS-4. Ind. Eng. Chem. Res. 2014, 53, 15522–15530.

[26]

Anson, A.; Wang, Y.; Lin, C. C. H.; Kuznicki, T. M.; Kuznicki, S. M. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 2008, 63, 4171–4175.

[27]

Wang, Y. X.; Peh, S. B.; Zhao, D. Alternatives to cryogenic distillation: Advanced porous materials in adsorptive light olefin/paraffin separations. Small 2019, 15, 1900058.

[28]

Yang, S. H.; Ramirez-Cuesta, A. J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S. K.; Campbell, S. I.; Tang, C. C.; Schröder, M. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. Nat. Chem. 2015, 7, 121–129.

[29]

Bao, Z. B.; Wang, J. W.; Zhang, Z. G.; Xing, H. B.; Yang, Q. W.; Yang, Y. W.; Wu, H.; Krishna, R.; Zhou, W.; Chen, B. L. et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 16020–16025.

[30]

Lin, R. B.; Li, L. B.; Zhou, H. L.; Wu, H.; He, C. H.; Li, S.; Krishna, R.; Li, J. P.; Zhou, W.; Chen, B. L. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 2018, 17, 1128–1133.

[31]

Wang, X. Q.; Krishna, R.; Li, L. B.; Wang, B.; He, T.; Zhang, Y. Z.; Li, J. R.; Li, J. P. Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chem. Eng. J. 2018, 346, 489–496.

[32]

Bao, Z. B.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q. L.; Lu, X. Y.; Deng, S. G. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework. Langmuir 2011, 27, 13554–13562.

[33]

Geier, S. J.; Mason, J. A.; Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Brown, C. M.; Long, J. R. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 2013, 4, 2054–2061.

[34]

Bae, Y. S.; Lee, C. Y.; Kim, K. C.; Farha, O. K.; Nickias, P.; Hupp, J. T.; Nguyen, S. T.; Snurr, R. Q. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. Angew. Chem., Int. Ed. 2012, 51, 1857–1860.

[35]

Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642.

[36]

Jorge, M.; Lamia, N.; Rodrigues, A. E. Molecular simulation of propane/propylene separation on the metal-organic framework CuBTC. Colloid Surf. A:Physicochem. Eng. Asp. 2010, 357, 27–34.

[37]

Fischer, M.; Gomes, J. R. B.; Fröba, M.; Jorge, M. Modeling adsorption in metal-organic frameworks with open metal sites: Propane/propylene separations. Langmuir 2012, 28, 8537–8549.

[38]

Bendt, S.; Hovestadt, M.; Böhme, U.; Paula, C.; Döpken, M.; Hartmann, M.; Keil, F. J. Olefin/paraffin separation potential of ZIF-9 and ZIF-71: A combined experimental and theoretical study. Eur. J. Inorg. Chem. 2016, 2016, 4440–4449.

[39]

Cho, K. H.; Yoon, J. W.; Lee, J. H.; Kim, J. C.; Kim, K.; Lee, U. H.; Choi, M.; Kwak, S. K.; Chang, J. S. Pore control of Al-based MIL-53 isomorphs for the preferential capture of ethane in an ethane/ethylene mixture. J. Mater. Chem. A 2021, 9, 14593–14600.

[40]

Verma, P.; Xu, X. F.; Truhlar, D. G. Adsorption on Fe-MOF-74 for C1-C3 hydrocarbon separation. J. Phys. Chem. C 2013, 117, 12648–12660.

[41]

Kahr, J.; Morris, R. E.; Wright, P. A. Post-synthetic incorporation of nickel into CPO-27(Mg) to give materials with enhanced permanent porosity. CrystEngComm 2013, 15, 9779–9786.

[42]

Yang, R. H.; Gao, R. M.; Wang, Y. J.; Qian, Z.; Luo, G. S. Selective adsorption of C6, C8, and C10 linear α-olefins from binary liquid-phase olefin/paraffin mixtures using zeolite adsorbents: Experiment and simulations. Langmuir 2020, 36, 8597–8609.

[43]

Bader, R. F. W.; Beddall, P. M. Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 1972, 56, 3320–3329.

[44]
Bader, R. F. W. Atoms in Molecules-A Quantum Theory; Clarendon Press: Oxford, 1994; pp 248–275.
[45]

Yang, R. H.; Chen, X.; Ma, J. X.; Gao, Y.; Wang, Y. J.; Luo, G. S. Direct imaging and mechanism study of C6 α-olefin adsorption on faujasite and Linde Type A zeolites. Nano Res. 2022, 15, 5322–5330.

[46]

Yang, R. H.; Gao, R. M.; Qian, Z.; Wang, Y. J. Batch and fixed bed column selective adsorption of C6, C8 and C10 linear α-olefins from binary liquid olefin/paraffin mixtures onto 5A and 13X microporous molecular sieves. Sep. Purif. Technol. 2020, 230, 115884.

[47]

Yang, R. H.; Ullah, S.; Wang, Y. J.; Luo, G. S.; Qian, Z. Adsorption separation of liquid-phase C5-C6 alkynes and olefins using FAU zeolite adsorbents. Sep. Purif. Technol. 2022, 278, 119563.

[48]

Dietzel, P. D. C.; Blom, R.; Fjellvåg, H. Base-induced formation of two magnesium metal-organic framework compounds with a bifunctional tetratopic ligand. Eur. J. Inorg. Chem. 2008, 2008, 3624–3632.

[49]

Wick, C. D.; Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B 2000, 104, 8008–8016.

[50]

Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577.

[51]

Maerzke, K. A.; Schultz, N. E.; Ross, R. B.; Siepmann, J. I. TraPPE-UA force field for acrylates and Monte Carlo simulations for their mixtures with alkanes and alcohols. J. Phys. Chem. B 2009, 113, 6415–6425.

[52]

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

[53]

Dubbeldam, D.; Torres-Knoop, A.; Walton, K. S. On the inner workings of Monte Carlo codes. Mol. Simul. 2013, 39, 1253–1292.

[54]

Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 2016, 42, 81–101.

[55]

Siepmann, J. I.; Frenkel, D. Configurational bias Monte carlo: A new sampling scheme for flexible chains. Mol. Phys. 1992, 75, 59–70.

[56]

Chempath, S.; Denayer, J. F. M.; De Meyer, K. M. A.; Baron, G. V.; Snurr, R. Q. Adsorption of liquid-phase alkane mixtures in silicalite: Simulations and experiment. Langmuir 2004, 20, 150–156.

[57]

Daems, I.; Baron, G. V.; Punnathanam, S.; Snurr, R. Q.; Denayer, J. F. M. Molecular cage nestling in the liquid-phase adsorption of n-alkanes in 5A zeolite. J. Phys. Chem. C 2007, 111, 2191–2197.

[58]

Macedonia, M. D.; Maginn, E. J. A biased grand canonical Monte Carlo method for simulating adsorption using all-atom and branched united atom models. Mol. Phys. 1999, 96, 1375–1390.

[59]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[60]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[61]

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[62]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[63]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[64]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[65]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[66]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[67]
Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3. 1. University of Wisconsin, Madison, 1995.
[68]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford, 2009.
[69]

Zhang, J. X.; Sheong, F. K.; Lin, Z. Y. Unravelling chemical interactions with principal interacting orbital analysis. Chem. -Eur. J. 2018, 24, 9639–9650.

[70]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

Nano Research
Pages 1595-1605
Cite this article:
Yang R, Ullah S, Chen X, et al. Selective adsorption of liquid long-chain α-olefin/paraffin on Mg-MOF-74: Adsorption behavior and interaction mechanism. Nano Research, 2023, 16(1): 1595-1605. https://doi.org/10.1007/s12274-022-4796-2
Topics:

903

Views

6

Crossref

14

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 07 April 2022
Revised: 14 July 2022
Accepted: 20 July 2022
Published: 02 September 2022
© Tsinghua University Press 2022
Return