AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping

Baojun Long1Peiyu Cao1Yuanmeng Zhao1( )Qianqian Fu1Yan Mo1Yueming Zhai3Juejing Liu4,5Xingyi Lyu6,7Tao Li6,7Xiaofeng Guo4,5Changsheng Shan1( )Minghua Zeng1,2( )
Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
Material Science and Engineering Program, Washington State University, Pullman, WA 99164, USA
Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, WA 99164, USA
X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
Show Author Information

Graphical Abstract

A novel Pt single atom supported on Ni6Co1 layered double hydroxides/nitrogen-doped graphene (NG) electrocatalyst was fabricated for boosting electrochemical non-enzymatic sensing towards glucose by a synergistic effect of Pt single atom, Co doping, and NG.

Abstract

The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing. In this work, a novel Pt single atoms (SAs) supported on Ni6Co1 layered double hydroxides/nitrogen-doped graphene (Pt1/Ni6Co1LDHs/NG) was constructed for electrochemical enzyme-free catalysis and sensing towards glucose. The loading of Pt single atoms increases with doping of Co atoms that generate more anchoring sites for Pt SAs. The resulting Pt1/Ni6Co1LDHs/NG exhibits low oxidative potential of 0.440 V with high sensitivity of 273.78 μA·mM−1·cm−2 toward glucose, which are 85 mV lower and 15 times higher than those of Ni(OH)2, respectively. Pt1/Ni6Co1LDHs/NG also shows excellent selectivity and great stability during 5-week testing. Theoretical and experimental results show that the boosted performance of Pt1/Ni6Co1LDHs/NG originates from its stronger binding energy with glucose and the synergistic effect of Pt SAs, Co doping, and NG. This work provides a general strategy of designing highly active SACs for extending their application in electrochemical sensing.

Electronic Supplementary Material

Download File(s)
12274_2022_4801_MOESM1_ESM.pdf (1 MB)

References

[1]

Cheng, Y. X.; Gong, X.; Yang, J.; Zheng, G. Z.; Zheng, Y.; Li, Y. J.; Xu, Y. S.; Nie, G.; Xie, X.; Chen, M. W. et al. A touch-actuated glucose sensor fully integrated with microneedle array and reverse iontophoresis for diabetes monitoring. Biosens. Bioelectron. 2022, 203, 114026.

[2]

Ma, J. W.; Chen, Y. G.; Chen, L.; Wang, L. Y. Ternary Pd-Ni-P nanoparticle-based nonenzymatic glucose sensor with greatly enhanced sensitivity achieved through active-site engineering. Nano Res. 2017, 10, 2712–2720.

[3]

Hwang, D. W.; Lee, S.; Seo, M.; Chung, T. D. Recent advances in electrochemical non-enzymatic glucose sensors-a review. Anal. Chim. Acta 2018, 1033, 1–34.

[4]

Luo, Y. M.; Wang, Q. Y.; Li, J. H.; Xu, F.; Sun, L. X.; Bu, Y. T.; Zou, Y. J.; Kraatz, H. B.; Rosei, F. Tunable hierarchical surfaces of CuO derived from metal-organic frameworks for non-enzymatic glucose sensing. Inorg. Chem. Front. 2020, 7, 1512–1525.

[5]

Zhu, C. Z.; Yang, G. H.; Li, H.; Du, D.; Lin, Y. H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249.

[6]

Li, X.; Feng, W. D.; Zhang, X. X.; Wang, W.; Chen, S. J.; Zhang, Y. N. Fabrication of humidity sensors based on laser scribed graphene oxide/SnO2 composite layers. Chin. J. Struct. Chem. 2020, 39, 1949–1957.

[7]

Xiao, J. Z.; Fu, Z. H.; Wang, G. E.; Ye, X. L.; Xu, G. Atomically thin 2D TiO2 nanosheets with ligand modified surface for ultra-sensitive humidity sensor. Chin. J. Struct. Chem. 2022, 41, 2204054–2204060.

[8]

Yuan, J. H.; Wang, K.; Xia, X. H. Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 2005, 15, 803–809.

[9]

Shen, L.; Liang, Z.; Chen, Z. Y.; Wu, C.; Hu, X. F.; Zhang, J. Y.; Jiang, Q.; Wang, Y. B. Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages. Nano Res. 2022, 15, 6490–6499.

[10]

Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

[11]

Dong, C. L.; Zhang, X. L.; Xu, J.; Si, R.; Sheng, J.; Luo, J.; Zhang, S. N.; Dong, W. J.; Li, G. B.; Wang, W. C. et al. Ruthenium-doped cobalt-chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer. Small 2020, 16, 1905328.

[12]

Zhu, W. X.; Wang, J.; Zhang, W. T.; Hu, N.; Wang, J.; Huang, L. J.; Wang, R.; Suo, Y. R.; Wang, J. L. Monolithic copper selenide submicron particulate film/copper foam anode catalyst for ultrasensitive electrochemical glucose sensing in human blood serum. J. Mater. Chem. B 2018, 6, 718–724.

[13]

Niu, X. H.; Li, X.; Pan, J. M.; He, Y. F.; Qiu, F. X.; Yan, Y. S. Recent advances in non-enzymatic electrochemical glucose sensors based on non-precious transition metal materials: Opportunities and challenges. RSC Adv. 2016, 6, 84893–84905.

[14]

Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.

[15]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[16]

Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

[17]

Peng, B. S.; Liu, H. T.; Liu, Z. Y.; Duan, X. F.; Huang, Y. Toward rational design of single-atom catalysts. J. Phys. Chem. Lett. 2021, 12, 2837–2847.

[18]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[19]

Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.

[20]

Shang, S. S.; Gao, S. Heteroatom-enhanced metal-free catalytic performance of carbocatalysts for organic transformations. Chem Cat Chem. 2019, 11, 3730–3744.

[21]

Wang, Z. L.; Xu, S. M.; Xu, Y. Q.; Tan, L.; Wang, X.; Zhao, Y. F.; Duan, H. H.; Song, Y. F. Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem. Sci. 2019, 10, 378–384.

[22]

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

[23]

Lin, Z. Y.; Waller, G.; Liu, Y.; Liu, M. L.; Wong, C. P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888.

[24]

Long, B. J.; Zhao, Y. M.; Cao, P. Y.; Wei, W.; Mo, Y.; Liu, J. J.; Sun, C. J.; Guo, X. F.; Shan, C. S.; Zeng, M. H. Single-atom Pt boosting electrochemical nonenzymatic glucose sensing on Ni(OH)2/N-doped graphene. Anal. Chem. 2022, 94, 1919–1924.

[25]

Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X. Y.; Yang, Z. T.; Du, X. J.; Qiu, B. J. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273–278.

[26]

Dam, D. T.; Lee, J. M. Ultrahigh pseudocapacitance of mesoporous Ni-doped Co(OH)2/ITO nanowires. Nano Energy 2013, 2, 1186–1196.

[27]

Wu, Y. T.; Ji, S.; Wang, H.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. A highly efficient water electrolyser cell assembled by asymmetric array electrodes based on Co, Fe-doped Ni(OH)2 nanosheets. Appl. Surf. Sci. 2020, 528, 146972.

[28]

Mansour, A. N. Nickel Mg Kα XPS spectra from the physical electronics model 5400 spectrometer. Surf. Sci. Spectra 1994, 3, 211–220.

[29]

Mansour, A. N. Nickel monochromated Al Kα XPS spectra from the physical electronics model 5400 spectrometer. Surf. Sci. Spectra 1994, 3, 221–230.

[30]

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

[31]

Zhang, H. B.; Zhou, W.; Dong, J. C.; Lu, X. F.; Lou, X. W. D. Intramolecular electronic coupling in porous iron cobalt (oxy) phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ. Sci. 2019, 12, 3348–3355.

[32]

Li, M. H.; Fang, L.; Zhou, H.; Wu, F.; Lu, Y.; Luo, H. J.; Zhang, Y. X.; Hu, B. S. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Appl. Surf. Sci. 2019, 495, 143554.

[33]

Yang, J.; Cho, M.; Lee, Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens. Bioelectron. 2016, 75, 15–22.

[34]

Wei, M.; Qiao, Y. X.; Zhao, H. T.; Liang, J.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Lu, W. B.; Sun, X. P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569.

[35]

Wang, G. M.; Lu, X. H.; Zhai, T.; Ling, Y. C.; Wang, H. Y.; Tong, Y. X.; Li, Y. Free-standing nickel oxide nanoflake arrays: Synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 2012, 4, 3123–3127.

[36]

Ponnusamy, R.; Chakraborty, B.; Rout, C. S. Pd-doped WO3 nanostructures as potential glucose sensor with insight from electronic structure simulations. J. Phys. Chem. B 2018, 122, 2737–2746.

[37]

Naik, K. K.; Gangan, A.; Chakraborty, B.; Nayak, S. K.; Rout, C. S. Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4-Pd nanosheets: Experimental and DFT investigations. ACS Appl. Mater. Interfaces 2017, 9, 23894–23903.

Nano Research
Pages 318-324
Cite this article:
Long B, Cao P, Zhao Y, et al. Pt1/Ni6Co1 layered double hydroxides/N-doped graphene for electrochemical non-enzymatic glucose sensing by synergistic enhancement of single atoms and doping. Nano Research, 2023, 16(1): 318-324. https://doi.org/10.1007/s12274-022-4801-9
Topics:

899

Views

25

Crossref

22

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 11 May 2022
Revised: 17 July 2022
Accepted: 23 July 2022
Published: 26 August 2022
© Tsinghua University Press 2022
Return