AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection

Xuejiao Sun1,2Cai Chen2Can Xiong2Congmin Zhang2Xusheng Zheng5Jin Wang3Xiaoping Gao2,3( )Zhen-Qiang Yu1( )Yuen Wu2,4( )
College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518071, China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
Dalian National Laboratory for Clean Energy, Dalian 116023, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Show Author Information

Graphical Abstract

A pM-level DA sensor based on MoS2 nanosheets surface modified by Ni single atom.

Abstract

Single atom catalysts have been recognized as potential catalysts to fabricate electrochemical biosensors, due to their unexpected catalytic selectivity and activity. Here, we designed and fabricated an ultrasensitive dopamine (DA) sensor based on the flower-like MoS2 embellished with single Ni site catalyst (Ni-MoS2). The limit of detection could achieve 1 pM in phosphate buffer solution (PBS, pH = 7.4), 1 pM in bovine serum (pH = 7.4), and 100 pM in artificial urine (pH = 6.8). The excellent sensing performance was attributed to the Ni single atom axial anchoring on the Mo atom in the MoS2 basal plane with the Ni-S3 structure. Both the experiment and density functional theory (DFT) results certify that this structural feature is more favorable for the adsorption and electron transfer of DA on Ni atoms. The high proportion of Ni active sites on MoS2 basal plane effectively enhanced the intrinsic electronic conductivity and electrochemical activity toward DA. The successful establishment of this sensor gives a new guide to expand the field of single atom catalyst in the application of biosensors.

Electronic Supplementary Material

Download File(s)
12274_2022_4802_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Laviolette, S. R. Dopamine modulation of emotional processing in cortical and subcortical neural circuits: Evidence for a final common pathway in schizophrenia? Schizophr. Bull. 2007, 33, 971–981.

[2]

Piggott, M. A.; Marshall, E. F.; Thomas, N.; Lloyd, S.; Court, J. A.; Jaros, E.; Burn, D.; Johnson, M.; Perry, R. H.; McKeith, I. G. et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer’s and Parkinson’s diseases: Rostrocaudal distribution. Brain 1999, 122, 1449–1468.

[3]

Bird, E. D.; Spokes, E. G. S.; Iversen, L. L. Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain 1979, 102, 347–360.

[4]

Sharman, D. F. The catabolism of catecholamines: Recent studies. Br. Med. Bull. 1973, 29, 110–115.

[5]

Shukla, R. P.; Aroosh, M.; Matzafi, A.; Ben-Yoav, H. Partially functional electrode modifications for rapid detection of dopamine in urine. Adv. Funct. Mater. 2021, 31, 2004146.

[6]

El-Beqqali, A.; Kussak, A.; Abdel-Rehim, M. Determination of dopamine and serotonin in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry. J. Sep. Sci. 2007, 30, 421–424.

[7]

Hows, M. E. P.; Organ, A. J.; Murray, S.; Dawson, L. A.; Foxton, R.; Heidbreder, C.; Hughes, Z. A.; Lacroix, L.; Shah, A. J. High-performance liquid chromatography/tandem mass spectrometry assay for the rapid high sensitivity measurement of basal acetylcholine from microdialysates. J. Neurosci. Methods 2002, 121, 33–39.

[8]

Huang, F.; Li, J.; Shi, H. L.; Wang, T. T.; Muhtar, W.; Du, M.; Zhang, B. B.; Wu, H.; Yang, L.; Hu, Z. B. et al. Simultaneous quantification of seven hippocampal neurotransmitters in depression mice by LC-MS/MS. J. Neurosci. Methods 2014, 229, 8–14.

[9]

Wang, J.; Hu, Y. Y.; Zhou, Q.; Hu, L. Z.; Fu, W. S.; Wang, Y. Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl. Mater. Interfaces 2019, 11, 44466–44473.

[10]

Cesewski, E.; Johnson, B. N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214.

[11]

Qing, X.; Wang, Y. D.; Zhang, Y.; Ding, X. C.; Zhong, W. B.; Wang, D.; Wang, W. W.; Liu, Q. Z.; Liu, K.; Li, M. F. et al. Wearable fiber-based organic electrochemical transistors as a platform for highly sensitive dopamine monitoring. ACS Appl. Mater. Interfaces 2019, 11, 13105–13113.

[12]

Sun, X. J.; Zhang, L.; Zhang, X. H.; Liu, X. X.; Jian, J.; Kong, D. C.; Zeng, D. C.; Yuan, H. M.; Feng, S. H. Electrochemical dopamine sensor based on superionic conducting potassium ferrite. Biosens. Bioelectron. 2020, 153, 112045.

[13]

Zhong, R. B.; Tang, Q.; Wang, S. P.; Zhang, H. B.; Zhang, F.; Xiao, M. S.; Man, T. T.; Qu, X. M.; Li, L.; Zhang, W. J. et al. Self-assembly of enzyme-like nanofibrous G-molecular hydrogel for printed flexible electrochemical sensors. Adv. Mater. 2018, 30, 1706887.

[14]

Bai, Y. C.; Zhang, W. D. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using Pt@Au/MWNTs modified electrode. Electroanalysis 2010, 22, 237–243.

[15]

Patriarchi, T.; Mohebi, A.; Sun, J. Q.; Marley, A.; Liang, R. Q.; Dong, C. Y.; Puhger, K.; Mizuno, G. O.; Davis, C. M.; Wiltgen, B. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 2020, 17, 1147–1155.

[16]

Qian, T.; Yu, C. F.; Zhou, X.; Wu, S. S.; Shen, J. Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection. Sens. Actuat. B:Chem. 2014, 193, 759–763.

[17]

Wen, M. Z.; Xing, Y.; Liu, G. Y.; Hou, S. L.; Hou, S. F. Electrochemical sensor based on Ti3C2 membrane doped with UIO-66-NH2 for dopamine. Mikrochim. Acta 2022, 189, 141.

[18]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[19]

Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

[20]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[21]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[22]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[23]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[24]

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

[25]

Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.

[26]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, 15, 38–70.

[27]

Zhao, Y.; Yu, Y. P.; Gao, F.; Wang, Z. Y.; Chen, W. X.; Chen, C.; Yang, J.; Yao, Y. C.; Du, J. Y.; Zhao, C. et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Res. 2021, 14, 4808–4813.

[28]

Zhu, D. M.; Ling, R. Y.; Chen, H.; Lyu, M.; Qian, H. S.; Wu, K. L.; Li, G. X.; Wang, X. W. Biomimetic copper single-atom nanozyme system for self-enhanced nanocatalytic tumor therapy. Nano Res. 2022, 15, 7320–7328.

[29]

Barua, S.; Dutta, H. S.; Gogoi, S.; Devi, R.; Khan, R. Nanostructured MoS2-based advanced biosensors: A review. ACS Appl. Nano Mater. 2018, 1, 2–25.

[30]

Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. N.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, M.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

[31]

Liu, R.; Fei, H. L.; Ye, G. L. Recent advances in single metal atom-doped MoS2 as catalysts for hydrogen evolution reaction. Tungsten 2020, 2, 147–161.

[32]

Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2017, 56, 7610–7614.

[33]

Wu, S. X.; Zeng, Z. Y.; He, Q. Y.; Wang, Z. J.; Wang, S. J.; Du, Y. P.; Yin, Z. Y.; Sun, X. P.; Chen, W.; Zhang, H. Electrochemically reduced single-layer MoS2 nanosheets: Characterization, properties, and sensing applications. Small 2012, 8, 2264–2270.

[34]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T'-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[35]

Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

[36]

Su, H. Y.; Chen, L. L.; Chen, Y. Z.; Si, R.; Wu, Y. T.; Wu, X. N.; Geng, Z. G.; Zhang, W. H.; Zeng, J. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia. Angew. Chem., Int. Ed. 2020, 59, 20411–20416.

[37]

Xie, X. L.; Wang, D. P.; Guo, C. X.; Liu, Y. H.; Rao, Q. H.; Lou, F. M.; Li, Q. N.; Dong, Y. Q.; Li, Q. F.; Yang, H. B. et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 2021, 93, 4916–4923.

[38]

Xin, X.; Song, Y. R.; Guo, S. H.; Zhang, Y. Z.; Wang, B. L.; Wang, Y. J.; Li, X. H. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J. Alloys Compd. 2020, 829, 154635.

[39]

Gao, X. Q.; Qi, J.; Wan, S. H.; Zhang, W.; Wang, Q.; Cao, R. Conductive molybdenum sulfide for efficient electrocatalytic hydrogen evolution. Small 2018, 14, 1803361.

[40]

Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

[41]

Ge, J. M.; Zhang, D. B.; Qin, Y.; Dou, T.; Jiang, M. H.; Zhang, F. Z.; Lei, X. D. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B: Environ. 2021, 298, 120557.

[42]

Jian, J.; Li, H.; Sun, X. J.; Kong, D. C.; Zhang, X. H.; Zhang, L.; Yuan, H. M.; Feng, S. H. 1T-2H Crx-MoS2 ultrathin nanosheets for durable and enhanced hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 7227–7232.

[43]

Peng, J.; Liu, Y. H.; Luo, X.; Wu, J. J.; Lin, Y.; Guo, Y. Q.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z.; Xie, Y. High phase purity of large-sized 1T'-MoS2 monolayers with 2D superconductivity. Adv. Mater. 2019, 31, 1900568.

[44]

Luo, R. C.; Luo, M.; Wang, Z. Q.; Liu, P.; Song, S. X.; Wang, X. D.; Chen, M. W. The atomic origin of nickel-doping-induced catalytic enhancement in MoS2 for electrochemical hydrogen production. Nanoscale 2019, 11, 7123–7128.

[45]

Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.

[46]

Xu, G. Y.; Jarjes, Z. A.; Desprez, V.; Kilmartin, P. A.; Travas-Sejdic, J. Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens. Bioelectron. 2018, 107, 184–191.

[47]

Palanisamy, S.; Ku, S. H.; Chen, S. M. Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite. Microchim. Acta 2013, 180, 1037–1042.

[48]

Zhao, D. Y.; Yu, G. L.; Tian, K. L.; Xu, C. X. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 2016, 82, 119–126.

[49]

Gao, F.; Cai, X. L.; Wang, X.; Gao, C.; Liu, S. L.; Gao, F.; Wang, Q. X. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuat. B:Chem. 2013, 186, 380–387.

[50]

Yang, Y.; Li, M. X.; Zhu, Z. W. A novel electrochemical sensor based on carbon nanotubes array for selective detection of dopamine or uric acid. Talanta 2019, 201, 295–300.

[51]

Anithaa, A. C.; Lavanya, N.; Asokan, K.; Sekar, C. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim. Acta 2015, 167, 294–302.

[52]

Sun, H. F.; Chao, J.; Zuo, X. L.; Su, S.; Liu, X. F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014, 4, 27625–27629.

[53]

Zhao, Y. N.; Zhou, J.; Jia, Z. M.; Huo, D. Q.; Liu, Q. Y.; Zhong, D. Q.; Hu, Y.; Yang, M.; Bian, M. H.; Hou, C. J. In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Mikrochim. Acta 2019, 186, 92.

[54]

Pietrzyńska, M.; Voelkel, A. Stability of simulated body fluids such as blood plasma, artificial urine and artificial saliva. Microchem. J. 2017, 134, 197–201.

Nano Research
Pages 917-924
Cite this article:
Sun X, Chen C, Xiong C, et al. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection. Nano Research, 2023, 16(1): 917-924. https://doi.org/10.1007/s12274-022-4802-8
Topics:

984

Views

35

Crossref

26

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 27 June 2022
Revised: 20 July 2022
Accepted: 22 July 2022
Published: 15 August 2022
© Tsinghua University Press 2022
Return