AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-organization and tunable characteristic lengths of two-dimensional hexagonal superlattices of nanowires directly grown on substrates

D. Yi1L. Peres1A. Pierrot1S. Cayez1R. Cours2B. Warot-Fonrose2C. Marcelot2P. Roblin3K. Soulantica1T. Blon1( )
Université de Toulouse, Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, 135 Avenue de Rangueil, F-31077 Toulouse, cedex 4, France
CEMES, Université de Toulouse, CNRS, 29 Rue Jeanne Marvig, BP 94347, F-31055 Toulouse, France
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS Toulouse, France
Show Author Information

Graphical Abstract

Using a combined analysis of small angle X-ray scattering, transmission, and scanning electron microscopies, we demonstrate the direct growth on surfaces of metallic nanowires which self-organize into highly ordered hexagonal superlattices with tunable characteristics depending of the stabilizing surfactants used.

Abstract

The organization of nano-objects on macroscopic surfaces is a key challenge for the technological improvement and implementation of nanotechnologies. For achieving operational functions, it is required to assemble nano-objects as controllable building blocks in highly ordered superstructures. Herein, we demonstrate the growth and self-organization of metallic nanowires on surfaces into hexagonal superlattices with tunable characteristic lengths depending of the stabilizing surfactants employed. Starting from a reacting mixture containing a Pt(111) substrate, a Co organometallic precursor, an amine, and an acid dissolved in a solvent, we quantify the structural evolution of superlattices of vertical single-crystalline Co nanowires on Pt, using a combined analysis of small angle neutron scattering, transmission, and scanning electron microscopies. We show the concerted steps of a spontaneous growth and self-organization of the nanowires into two-dimensional (2D) hexagonal lattice on Pt, at intervals starting from a few hours of reaction to a highly ordered superlattice at longer times. Furthermore, it is shown that apart from long-chain acid and long-chain aliphatic amine pairs used as stabilizers, the combination of a long-chain aliphatic and a short-chain aromatic ligand in the synthesis can also be employed for the nanowire superlattices development. Interestingly, the possibility to employ different pairs allows quantitative modulation of the nanowire arrays, such as the interwire distance and the packing fraction.

Electronic Supplementary Material

Download File(s)
12274_2022_4804_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

[2]

Li, X. Y.; Liu, X. W.; Liu, X. G. Self-assembly of colloidal inorganic nanocrystals: Nanoscale forces, emergent properties and applications. Chem. Soc. Rev. 2021, 50, 2074–2101.

[3]

Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.

[4]

Dugay, J.; Tan, R. P.; Loubat, A.; Lacroix, L. M.; Carrey, J.; Fazzini, P. F.; Blon, T.; Mayoral, A.; Chaudret, B.; Respaud, M. Tuning deposition of magnetic metallic nanoparticles from periodic pattern to thin film entrainment by dip coating method. Langmuir 2014, 30, 9028–9035.

[5]

Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

[6]

Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

[7]

Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting nanocrystal shape through consideration of surface–ligand interactions. ACS Nano 2012, 6, 2118–2127.

[8]

Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.

[9]

Fan, H. J.; Werner, P.; Zacharias M. Semiconductor nanowires: From self-organization to patterned growth. Small 2006, 2, 700–717.

[10]

Wacaser, B. A.; Dick, K. A.; Johansson, J.; Borgström, M. T.; Deppert, K.; Samuelson, L. Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 2009, 21, 153–165.

[11]

Yeo, J.; Hong, S.; Kim, G.; Lee, H.; Suh, Y. D.; Park, I.; Grigoropoulos, C. P.; Ko, S. H. Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 2015, 9, 6059–6068.

[12]

Xu, S.; Lao, C. S.; Weintraub, B.; Wang, Z. L. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 2008, 23, 2072–2077.

[13]

Srivastava, S.; Kotov, N. A. Nanoparticleassembly for 1D and 2D ordered structures. Soft Matter 2009, 5, 1146–1156.

[14]

Wetz, F.; Soulantica, K.; Respaud, M.; Falqui, A.; Chaudret, B. Synthesis and magnetic properties of Co nanorod superlattices. Mater. Sci. Eng. C 2007, 27, 1162–1166.

[15]

Liakakos, N.; Cormary, B.; Li, X. J.; Lecante, P.; Respaud, M.; Maron, L.; Falqui, A.; Genovese, A.; Vendier, L.; Koïnis, S. et al. The big impact of a small detail:Cobalt nanocrystal polymorphism as a result of precursor addition rate during stock solution preparation. J. Am. Chem. Soc. 2012, 134, 17922–17931.

[16]

Liakakos, N.; Blon, T.; Achkar, C.; Vilar, V.; Cormary, B.; Tan, R. P.; Benamara, O.; Chaboussant, G.; Ott, F.; Warot-Fonrose, B. et al. Solution epitaxial growth of cobalt nanowires on crystalline substrates for data storage densities beyond 1 Tbit/in2. Nano Lett. 2014, 14, 3481–3486.

[17]

Harmel, J.; Peres, L.; Estrader, M.; Berliet, A.; Maury, S.; Fécant, A.; Chaudret, B.; Serp, P.; Soulantica, K. hcp-Co nanowires grown on metallic foams as catalysts for Fischer–Tropsch synthesis. Angew. Chem., Int. Ed. 2018, 57, 10579–10583.

[18]

Lacroix, L. M.; Lachaize, S.; Falqui, A.; Respaud, M.; Chaudret, B. Iron nanoparticle growth in organic superstructures. J. Am. Chem. Soc. 2009, 131, 549–557.

[19]

Peres, L.; Yi, D. L.; Bustos-Rodriguez, S.; Marcelot, C.; Pierrot, A.; Fazzini, P. F.; Florea, I.; Arenal, R.; Lacroix, L. M.; Warot-Fonrose, B. et al. Shape selection through epitaxy of supported platinum nanocrystals. Nanoscale 2018, 10, 22730–22736.

[20]

Liakakos, N.; Achkar, C.; Cormary, B.; Harmel, J.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Respaud, M.; Soulantica, K.; Blon, T. Oriented metallic nano-objects on crystalline surfaces by solution epitaxial growth. ACS Nano 2015, 9, 9665–9677.

[21]

Albrecht, T. R.; Arora, H.; Ayanoor-Vitikkate, V.; Beaujour, J. M.; Bedau, D.; Berman, D.; Bogdanov, A. L.; Chapuis, Y. A.; Cushen, J.; Dobisz, E. E. et al. Bit-patterned magnetic recording: Theory, media fabrication, and recording performance. IEEE Trans. Magn. 2015, 51, 0800342.

[22]

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

[23]

Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128–11180.

[24]

Cormary, B.; Li, T.; Liakakos, N.; Peres, L.; Fazzini, P. F.; Blon, T.; Respaud, M.; Kropf, A. J.; Chaudret, B.; Miller, J. T. et al. Concerted growth and ordering of cobalt nanorod arrays as revealed by tandem in situ SAXS-XAS studies. J. Am. Chem. Soc. 2016, 138, 8422–8431.

[25]

Dumestre, F.; Chaudret, B.; Amiens, C.; Respaud, M.; Fejes, P.; Renaud, P.; Zurcher, P. Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew. Chem., Int. Ed. 2003, 42, 5213–5216.

[26]

Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res. 1999, 32, 397–406.

[27]

Boles, M. A.; Talapin, D. V. Many-body effects in nanocrystal superlattices: Departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 2015, 137, 4494–4502.

[28]

Quan, Z. W.; Xu, H. W.; Wang, C. Y.; Wen, X. D.; Wang, Y. X.; Zhu, J. L.; Li, R. P.; Sheehan, C. J.; Wang, Z. W.; Smilgies, D. M. et al. Solvent-mediated self-assembly of nanocube superlattices. J. Am. Chem. Soc. 2014, 136, 1352–1359.

[29]

Kaźḿierczak, K.; Yi, D. L.; Jaud, A.; Fazzini, P. F.; Estrader, M.; Viau, G.; Decorse, P.; Piquemal, J. Y.; Michel, C.; Besson, M. et al. Influence of capping ligands on the catalytic performances of cobalt nanoparticles prepared with the organometallic route. J. Phys. Chem. C 2021, 125, 7711–7720.

[30]

Feng, X.; Sosa-Vargas, L.; Umadevi, S.; Mori, T.; Shimizu, Y.; Hegmann, T. Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π–π interactions. Adv. Funct. Mater. 2015, 25, 1180–1192.

[31]
Lin N.; Stepanow S.; Ruben M.; Barth J. V. Surface-confined supramolecular coordination chemistry. In: Templates in Chemistry III. Broekmann, P.; Dötz, K. H.; Schalley, C. A., Eds.; Springer: Berlin, 2008; pp 1–44.
[32]

Lippel, P. H.; Wilson, R. J.; Miller, M. D.; Wöll, C.; Chiang, S. High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 1989, 62, 171–174.

[33]

Kröger, J.; Jensen, H.; Néel, N.; Berndt, R. Self-organization of cobalt-phthalocyanine on a vicinal gold surface revealed by scanning tunnelling microscopy. Surf. Sci. 2007, 601, 4180–4184.

[34]

Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407.

Nano Research
Pages 1606-1613
Cite this article:
Yi D, Peres L, Pierrot A, et al. Self-organization and tunable characteristic lengths of two-dimensional hexagonal superlattices of nanowires directly grown on substrates. Nano Research, 2023, 16(1): 1606-1613. https://doi.org/10.1007/s12274-022-4804-6
Topics:

678

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 February 2022
Revised: 19 May 2022
Accepted: 24 May 2022
Published: 05 August 2022
© Tsinghua University Press 2022
Return