AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel synthetic method of porous and nanoflower-like Al2O3/MoS2 catalyst for reduction of SO2 to elemental sulfur

Yiqian Yang1,2Jiayuan Yu2Yu Chen2Gang Wang3Chunshan Li2( )Erqiang Wang3( )Zhijian Peng1( )
School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Porous Al2O3 supported on the MoS2 with a nanoflower-like structure was synthesized for the reduction of SO2 to elemental sulfur. The porous nanoflower-like structures of Al2O3/MoS2 catalysts promoted the sulfur selectivity without inhibiting the catalytic performance of MoS2.

Abstract

MoS2 nanoflowers are favored for their potential in the production of elemental sulfur due to abundant surface area and good catalytic performance for reducing SO2. A novel synthetic strategy of porous Al2O3 supported on the MoS2 with nanoflower structure was proposed. The effects of preparation concentration, calcination atmosphere, and Al2O3 contents on the growth of catalysts with nanoflower structure were systematically studied via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET). The surface area was increased to 295.502 m2/g and the amount of Lewis acid on the surface of the Al2O3/MoS2 catalyst was increased by adjusting the ratio of Al/Mo. The porous and nanoflower structures of Al2O3/MoS2 catalysts promoted the sulfur selectivity without inhibiting the catalytic performance of MoS2. The conversion of SO2 and the selectivity of sulfur were 100% and 92% after 100 h life evaluation.

References

[1]

Inanloo, M.; Sadeghi, G. Consequence modeling for accidental events of SO2 release in a detergent manufacturing company. J. Hum. Environ. Health Promot. 2019, 5, 172–176.

[2]

Park, N. K.; Lee, T. H.; Lee, T. J.; Baek, J. I.; Lee, J. B. Catalytic reduction of SO2 under the regeneration of off-gas containing oxygen over Cu-Sn-Zr-based oxides for the hot coal gas desulfurization process. Catal. Today 2016, 265, 131–137.

[3]

Han, G. B.; Park, N. K.; Lee, T. J. Effect of O2 on SO2 reduction with CO or H2 over SnO2-ZrO2 catalyst. Ind. Eng. Chem. Res. 2009, 48, 10307–10313.

[4]

Khani, M.; Mousavi, S. E.; Pahlavanzadeh, H.; Ale Ebrahim, H.; Mozaffari, A. Study of MoO3-γAl2O3 catalysts behavior in selective catalytic reduction of SO2 toxic gas to sulfur with CH4. Environ. Sci. Pollut. Res. 2019, 26, 9686–9696.

[5]

Khangah, A. H.; Sarraf, M. J.; Ebrahim, H. A.; Tabatabaee, M. Preparing and optimization of cerium-lanthanum-cobalt ternary mixed oxide as catalyst for SO2 reduction to sulfur. e-J. Surf. Sci. Nanotechnol. 2019, 17, 16–26.

[6]

Pi, X. X.; Sun, F.; Qu, Z. B.; Gao, J. H.; Wang, A. N.; Zhao, G. B.; Liu, H. Producing elemental sulfur from SO2 by calcium loaded activated coke: Enhanced activity and selectivity. Chem. Eng. J. 2020, 401, 126022.

[7]

France, L. J.; Li, W.; Zhang, Y. K.; Mu, W. T.; Chen, Z. H.; Shi, J. J.; Zeng, Q.; Li, X. H. A superior Fe-Zr mixed oxide catalyst for the simultaneous reduction of NO and SO2 with CO. Appl. Catal. B Environ. 2020, 269, 118822.

[8]

Ge, T. T.; Zuo, C. C.; Chen, H. N.; Muhammad, Y.; Wei, L. B.; Li, C. S. Catalytic activity and molecular behavior of lanthanum modified CoSx/γ-Al2O3 catalysts for the reduction of SO2 to sulfur in smelter off-gas using CO-H2 mixture as reductant. Ind. Eng. Chem. Res. 2019, 58, 3595–3605.

[9]

Yang, Y. Q.; Peng, Z. J.; Zhao, H.; Wang, E. Q.; Li, C. S. Ce-modified Mo/γ-Al2O3 catalysts for production of elemental sulfur through reducing SO2. Ind. Eng. Chem. Res. 2021, 60, 15942–15950.

[10]

AlQahtani, M. S.; Knecht, S. D.; Wang, X. X.; Bilén, S. G.; Song, C. S. One-step low-temperature reduction of sulfur dioxide to elemental sulfur by plasma-enhanced catalysis. ACS Catal. 2020, 10, 5272–5277.

[11]

Sohn, H. Y.; Savic, M.; Padilla, R.; Han, G. A novel reaction system involving BaS and BaSO4 for converting SO2 to elemental sulfur without generating pollutants: Part II. Kinetics of the hydrogen reduction of BaSO4 to BaS. Chem. Eng. Sci. 2006, 64, 5088–5093.

[12]

Ng, K. H.; Lai, S. Y.; Jamaludin, N. F. M.; Mohamed, A. R. A review on dry-based and wet-based catalytic sulphur dioxide (SO2) reduction technologies. J. Hazard. Mater. 2022, 423, 127061.

[13]

Moody, D. C.; Ryan, R. R.; Salazar, K. V. Catalytic reduction of sulfur dioxide. J. Catal. 1981, 70, 221–224.

[14]

Feng, T.; Huo, M. J.; Zhao, X. Q.; Wang, T.; Xia, X.; Ma, C. Y. Reduction of SO2 to elemental sulfur with H2 and mixed H2/CO gas in an activated carbon bed. Chem. Eng. Res. Des. 2017, 121, 191–199.

[15]

Han, G. B.; Park, N. K.; Yoon, S. H.; Lee, T. J.; Han, G. Y. Direct reduction of sulfur dioxide to elemental sulfur with hydrogen over Sn-Zr-based catalysts. Ind. Eng. Chem. Res. 2008, 47, 4658–4664.

[16]

Van Durme, J.; Dewulf, J.; Leys, C.; Van Langenhove, H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Catal. B Environ. 2008, 78, 324–333.

[17]

Stere, C. E.; Adress, W.; Burch, R.; Chansai, S.; Goguet, A.; Graham, W. G.; De Rosa, F.; Palma, V.; Hardacre, C. Ambient temperature hydrocarbon selective catalytic reduction of NOx using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. ACS Catal. 2014, 4, 666–673.

[18]

Feng, X. X.; Liu, H. X.; He, C.; Shen, Z. X.; Wang, T. B. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: A review. Catal. Sci. Technol. 2018, 8, 936–954.

[19]

Bogaerts, A.; Neyts, E. C. Plasma technology: An emerging technology for energy storage. ACS Energy Lett. 2018, 3, 1013–1027.

[20]

Wang, L.; Yi, Y. H.; Guo, H. C.; Tu, X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catal. 2018, 8, 90–100.

[21]

Gibson, E. K.; Stere, C. E.; Curran-McAteer, B.; Jones, W.; Cibin, G.; Gianolio, D.; Goguet, A.; Wells, P. P.; Catlow, C. R. A.; Collier, P. et al. Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane. Angew. Chem., Int. Ed. 2017, 56, 9351–9355.

[22]

Datta, A.; Cavell, R. G.; Tower, R. W.; George, Z. M. Claus catalysis. 1. Adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy. J. Phys. Chem. 1985, 89, 443–449.

[23]

Datta, A.; Cavell, R. G. Claus catalysis. 2. An FTIR study of the adsorption of hydrogen sulfide on the alumina catalyst. J. Phys. Chem. 1985, 89, 450–454.

[24]

Lo, J. M. H.; Ziegler, T.; Clark, P. D. SO2 adsorption and transformations on γ-Al2O3 surfaces:A density functional theory study. J. Phys. Chem. C 2010, 114, 10444–10454.

[25]

Ge, T. T.; Zuo, C. C.; Zhang, J. P.; Wei, L. B.; Li, C. S. Selective reduction of SO2 in smelter off-gas with coal gas to sulfur over metal sulfide supported catalysts. Ind. Eng. Chem. Res. 2018, 57, 4170–4179.

[26]

Mahmoudabadi, Z. S.; Tavasoli, A.; Rashidi, A.; Esrafili, M. Catalytic activity of synthesized 2D MoS2/graphene nanohybrids for the hydrodesulfurization of SRLGO: Experimental and DFT study. Environ. Sci. Pollut. Res. 2021, 28, 5978–5990.

[27]

Mahmoudabadi, Z. S.; Rashidi, A.; Tavasoli, A.; Esrafili, M.; Panahi, M.; Askarieh, M.; Khodabakhshi, S. Ultrasonication-assisted synthesis of 2D porous MoS2/GO nanocomposite catalysts as high-performance hydrodesulfurization catalysts of vacuum gasoil: Experimental and DFT study. Ultrason. Sonochem. 2021, 74, 105558.

[28]

Li, P.; Chen, Y. D.; Zhang, C.; Huang, B. K.; Liu, X. Y.; Liu, T. F.; Jiang, Z. X.; Li, C. Highly selective hydrodesulfurization of gasoline on unsupported Co-Mo sulfide catalysts: Effect of MoS2 morphology. Appl. Catal. A Gen. 2017, 533, 99–108.

[29]

Varakin, A. N.; Mozhaev, A. V.; Pimerzin, A. A.; Nikulshin, P. A. Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method. Appl. Catal. B Environ. 2018, 238, 498–508.

[30]

Tye, C. T.; Smith, K. J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst. Catal. Today 2006, 116, 461–468.

[31]

García-Gutiérrez, J. L.; Laredo, G. C.; Fuentes, G. A.; García-Gutiérrez, P.; Jiménez-Cruz, F. Effect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst. Fuel 2014, 138, 98–103.

[32]

Zhang, H. P.; Lin, H. F.; Zheng, Y. Application of uniform design method in the optimization of hydrothermal synthesis for nano MoS2 catalyst with high HDS activity. Catalysts 2018, 8, 654.

[33]

Lao, J.; Li, D.; Jiang, C. L.; Luo, C. H.; Qi, R. J.; Lin, H. C.; Huang, R.; Waterhouse, G. I. N.; Peng, H. Synergistic effect of cobalt boride nanoparticles on MoS2 nanoflowers for a highly efficient hydrogen evolution reaction in alkaline media. Nanoscale 2020, 12, 10158–10165.

[34]

Rasamani, K. D.; Alimohammadi, F.; Sun, Y. G. Interlayer-expanded MoS2. Mater. Today 2017, 20, 83–91.

[35]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[36]

Yang, N.; Yang, H. B.; Qu, Y. Q.; Fan, Y. Z.; Chang, L. X.; Zhu, H. Y.; Li, M. H.; Zou, G. T. Preparation of Cu-Zn/ZnO core–shell nanocomposite by surface modification and precipitation process in aqueous solution and its photoluminescence properties. Mater. Res. Bull. 2006, 41, 2154–2160.

[37]

Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

[38]

Soriano, M. D.; Cecilia, J. A.; Natoli, A.; Jiménez-Jiménez, J.; López Nieto, J. M.; Rodríguez-Castellón, E. Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catal. Today 2015, 254, 36–42.

[39]

Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354.

[40]

Wang, J. A.; Bokhimi, X.; Novaro, O.; López, T.; Tzompantzi, F.; Gómez, R.; Navarrete, J.; Llanos, M. E.; López-Salinas, E. Effects of structural defects and acid-basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol-gel alumina catalyst. J. Mol. Catal. A Chem. 1999, 137, 239–252.

[41]

Liu X, S.; Truitt, R. E. DRFT-IR studies of the surface of γ-alumina. J. Am. Chem. Soc. 1997, 119, 9856–9860.

[42]

Vázquez, A.; López, T.; Gómez, R.; Bokhimi; Morales, A.; Novaro, O. X-ray diffraction, FTIR, and NMR characterization of sol-gel alumina doped with lanthanum and cerium. J. Solid State Chem. 1997, 128, 161–168.

[43]

Paik, S. C.; Chung, J. S. Selective hydrogenation of SO2 to elemental sulfur over transition metal sulfides supported on Al2O3. Appl. Catal. B Environ. 1996, 8, 267–279.

Nano Research
Pages 6076-6084
Cite this article:
Yang Y, Yu J, Chen Y, et al. A novel synthetic method of porous and nanoflower-like Al2O3/MoS2 catalyst for reduction of SO2 to elemental sulfur. Nano Research, 2023, 16(5): 6076-6084. https://doi.org/10.1007/s12274-022-4805-5
Topics:
Part of a topical collection:

1181

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 12 April 2022
Revised: 20 July 2022
Accepted: 25 July 2022
Published: 20 August 2022
© Tsinghua University Press 2022
Return