AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid

Zhijuan Liu1,§Guangjin Wang3,§Jinyu Guo1Shuangyin Wang2( )Shuang-Quan Zang1( )
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Hunan University, State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, China
School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China

§ Zhijuan Liu and Guangjin Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Compressive strain and metal vacancies have been successfully introduced into IrO2/Ir heterophase. With the integration of relocated atoms and metal vacancies, the d-band center and electronic structure of electrocatalyst have been modulated, which leaded to outstanding electrochemical oxygen evolution reaction activity in acid.

Abstract

IrO2 exhibits good stability but limited electrocatalytic activity for oxygen evolution reaction in acid. Defect engineering is an effective strategy to improve the intrinsic ability of electrocatalysts by tailoring their electronic structure. Herein, we have successfully synthesized IrO2/Ir heterophase with compressive strain and metal vacancies via a simple substitution-etching method. In virtue of the solubility of Cr in strong alkali, metal vacancies could be formed at surface after etching Cr-doped IrO2/Ir in alkali, which leaded to modulated electronic structure. Meanwhile, the substitution of Cr with smaller atom radius would induce the formation of compressive strain and the relocated atoms made the d-band center shifted. With the regulated electronic structure and tuned d-band center, the obtained electrocatalyst only needed 285 mV to reach 10 mA·cm−2 in 0.1 M HClO4. Reaction kinetic has been rapidly accelerated as indicated by the smaller Tafel slope and charge transfer resistance. Theoretical calculations revealed that the d-band center and charge density distribution have been regulated with the introduction of defects in IrO2/Ir, which significantly decreased the free energy barrier of rate determining step. This work provides a valuable reference to design effective and defects-rich electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_4807_MOESM1_ESM.pdf (3 MB)

References

[1]

Winter, C. J. Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. Int. J. Hydrogen Energy 2009, 34, S1–S52.

[2]

Wang, Y. D.; Wu, W.; Chen, R. Z.; Lin, C. X.; Mu, S. C.; Cheng, N. C. Reduced water dissociation barrier on constructing Pt-Co/CoOx interface for alkaline hydrogen evolution. Nano Res. 2022, 15, 4958–4964.

[3]

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

[4]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[5]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[6]

Ismail, N.; Qin, F. J.; Fang, C. H.; Liu, D.; Liu, B. H.; Liu, X. Y.; Wu, Z. L.; Chen, Z.; Chen, W. X. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2, e106.

[7]

Liu, C. J.; Sheng, B. B.; Zhou, Q.; Cao, D. F.; Ding, H. H.; Chen, S. M.; Zhang, P. J.; Xia, Y. J.; Wu, X. J.; Song, L. Motivating Ru-bri site of RuO2 by boron doping toward high performance acidic and neutral oxygen evolution. Nano Res. 2022, 15, 7008–7015.

[8]

Amano, F.; Furusho, Y.; Yamazoe, S.; Yamamoto, M. Structure-stability relationship of amorphous IrO2-Ta2O5 electrocatalysts on Ti felt for oxygen evolution in sulfuric acid. J. Phys. Chem. C 2022, 126, 1817–1827.

[9]

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 2014, 5, 2474–2478.

[10]

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

[11]

Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 2021, 11, 8848–8871.

[12]

Kuo, D. Y.; Kawasaki, J. K.; Nelson, J. N.; Kloppenburg, J.; Hautier, G.; Shen, K. M.; Schlom, D. G.; Suntivich, J. Influence of surface adsorption on the oxygen evolution reaction on IrO2 (110). J. Am. Chem. Soc. 2017, 139, 3473–3479.

[13]

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

[14]

Reier, T.; Pawolek, Z.; Cherevko, S.; Bruns, M.; Jones, T.; Teschner, D.; Selve, S.; Bergmann, A.; Nong, H. N.; Schlögl, R. et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 2015, 137, 13031–13040.

[15]

Lim, J.; Park, D.; Jeon, S. S.; Roh, C. W.; Choi, J.; Yoon, D.; Park, M.; Jung, H.; Lee, H. Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv. Funct. Mater. 2018, 28, 1704796.

[16]

Da Silva, G. C.; Fernandes, M. R.; Ticianelli, E. A. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions. ACS Catal. 2018, 8, 2081–2092.

[17]

Oakton, E.; Lebedev, D.; Povia, M.; Abbott, D. F.; Fabbri, E.; Fedorov, A.; Nachtegaal, M.; Copéret, C.; Schmidt, T. J. IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 2017, 7, 2346–2352.

[18]

Li, Q.; Li, J. J.; Xu, J. Y.; Zhang, N.; Li, Y. P.; Liu, L. F.; Pan, D.; Wang, Z. C.; Deepak, F. L. Ultrafine-grained porous Ir-based catalysts for high-performance overall water splitting in acidic media. ACS Appl. Energy Mater. 2020, 3, 3736–3744.

[19]

Buvat, G.; Eslamibidgoli, M. J.; Youssef, A. H.; Garbarino, S.; Ruediger, A.; Eikerling, M.; Guay, D. Effect of IrO6 octahedron distortion on the OER activity at (100) IrO2 thin film. ACS Catal. 2020, 10, 806–817.

[20]

Yu, Z. P.; Xu, J. Y.; Li, Y. F.; Wei, B.; Zhang, N.; Li, Y.; Bondarchuk, O.; Miao, H. W.; Araujo, A.; Wang, Z. C. et al. Ultrafine oxygen-defective iridium oxide nanoclusters for efficient and durable water oxidation at high current densities in acidic media. J. Mater. Chem. A 2020, 8, 24743–24751.

[21]

Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.

[22]

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv Mater 2016, 28, 9532–9538.

[23]

Zhao, H. Y.; Sun, C. H.; Jin, Z.; Wang, D. W.; Yan, X. C.; Chen, Z. G.; Zhu, G. S.; Yao, X. D. Carbon for the oxygen reduction reaction: A defect mechanism. J. Mater. Chem. A 2015, 3, 11736–11739.

[24]

Zaman, W. Q.; Wang, Z. Q.; Sun, W.; Zhou, Z. H.; Tariq, M.; Cao, L. M.; Gong, X. Q.; Yang, J. Ni-Co codoping breaks the limitation of single-metal-doped IrO2 with higher oxygen evolution reaction performance and less iridium. ACS Energy Lett. 2017, 2, 2786–2793.

[25]

Hao, S. Y.; Wang, Y. H.; Zheng, G. K.; Qiu, L. S.; Xu, N.; He, Y.; Lei, L. C.; Zhang, X. W. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media. Appl. Catal. B. Environ. 2020, 266, 118643.

[26]

Yan, X. C.; Jia, Y.; Yao, X. D. Defective structures in metal compounds for energy-related electrocatalysis. Small Struct. 2021, 2, 2000067.

[27]

Lyu, X.; Jia, Y.; Mao, X.; Li, D. H.; Li, G.; Zhuang, L. Z.; Wang, X.; Yang, D. J.; Wang, Q.; Du, A. J. et al. Gradient-concentration design of stable core–shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 2020, 32, 2003493.

[28]

Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

[29]

Shan, J. Q.; Guo, C. X.; Zhu, Y. H.; Chen, S. M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S. Z. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem 2019, 5, 445–459.

[30]

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

[31]

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

[32]

Pan, L.; Wang, S. B.; Mi, W. B.; Song, J. J.; Zou, J. J.; Wang, L.; Zhang, X. W. Undoped ZnO abundant with metal vacancies. Nano Energy 2014, 9, 71–79.

[33]

Gou, W. Y.; Zhang, M. K.; Zou, Y.; Zhou, X. M.; Qu, Y. Q. Iridium-chromium oxide nanowires as highly performed OER catalysts in acidic media. ChemCatChem 2019, 11, 6008–6014.

[34]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[35]

Wang, Q. L.; Xu, C. Q.; Liu, W.; Hung, S. F.; Yang, H. B.; Gao, J. J.; Cai, W. Z.; Chen, H. M.; Li, J.; Liu, B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 2020, 11, 4246.

[36]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[37]

Oh, H. S.; Nong, H. N.; Reier, T.; Bergmann, A.; Gliech, M.; De Araújo, J. F.; Willinger, E.; Schlögl, R.; Teschner, D.; Strasser, P. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 2016, 138, 12552–12563.

[38]

Pignataro, S.; Foffani, A.; Distefano, G. Esca study of some chromium complexes: Ionization energies and multi-peak structure of the spectra. Chem. Phys. Lett. 1973, 20, 350–355.

[39]

Raj, R. P.; Ragupathy, P.; Mohan, S. Remarkable capacitive behavior of a Co3O4-polyindole composite as electrode material for supercapacitor applications. J. Mater. Chem. A 2015, 3, 24338–24348.

[40]

Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

[41]

Xie, C.; Chen, W.; Du, S. Q.; Yan, D. F.; Zhang, Y. Q.; Chen, J.; Liu, B.; Wang, S. Y. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 2020, 71, 104653.

[42]

Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.

[43]

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

[44]

Sun, W.; Zhou, Z. H.; Zaman, W. Q.; Cao, L. M.; Yang, J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl. Mater. Interfaces 2017, 9, 41855–41862.

Nano Research
Pages 334-342
Cite this article:
Liu Z, Wang G, Guo J, et al. Sub-2 nm IrO2/Ir nanoclusters with compressive strain and metal vacancies boost water oxidation in acid. Nano Research, 2023, 16(1): 334-342. https://doi.org/10.1007/s12274-022-4807-3
Topics:

978

Views

18

Crossref

15

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 26 April 2022
Revised: 20 July 2022
Accepted: 22 July 2022
Published: 02 September 2022
© Tsinghua University Press 2022
Return