AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oral nanoparticles containing naringenin suppress atherosclerotic progression by targeting delivery to plaque macrophages

Mengran Guo1,§Zhongshan He1,§Zhaohui Jin1,§Lingjing Huang1Jingmei Yuan1Shugang Qin1Xinchun Wang2Lili Cao3Xiangrong Song1( )
Department of Critical Care Medicine, Department of Anesthesiology and Translational Neuroscience Center, Department of Clinical Pharmacy, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
First Affiliated Hospital of the Medical College, Shihezi University, Shihezi 832008, China
College of Medicine, Chengdu University, Chengdu 610000, China

§ Mengran Guo, Zhongshan He, and Zhaohui Jin contributed equally to this work.

Show Author Information

Graphical Abstract

A lipid-polymer based nanoparticles (FA-LNPs) decorated with folic acid was developed to deliver naringenin to atherosclerosis plaque sites through oral route. After oral administration, FA-LNPs can effectively overcome intestinal mucosal-epithelial barrier by increasing the transmembrane transport of intestinal epithelial and lymphatic transport, and then actively target to the aortic plaque sites and accumulate in lesional macrophages.

Abstract

Atherosclerosis is the main cause of ischemic stroke and myocardial infarction diseases. Nanoparticles have shown unique benefits for atherosclerosis treatment by targeting the lesional macrophages of plaques. However, most of the nanocarriers are administered intravenously, which is inconvenient and may cause complications. Herein, we developed an oral lipid-polymer based nanoparticles (FA-LNPs) decorated with folic acid, which can not only effectively overcome intestinal mucosal-epithelial barrier by increasing the transmembrane transport through intestinal epithelial and the accumulation in Peyer’s patches but also actively target to the aortic plaque sites and accumulate in lesional macrophages. Subsequently, naringenin (Nrg), one of the anti-inflammation drugs, was designed to be the oral nanomedicine (FA-LNPs/Nrg) for the first time via the encapsulation of FA-LNPs. FA-LNPs/Nrg presented highly anti-atherosclerotic efficacy. After the atherosclerotic ApoE−/− mice were treated by FA-LNPs/Nrg via oral administration for three months, the aortic lesion area, plaque area, and necrotic core area of the aortic root were significantly decreased. Meanwhile, the lipid-related blood parameters recovered to normal levels. Our study provides a promising approach to atherosclerosis treatment based on the novel oral targeting delivery system.

Electronic Supplementary Material

Download File(s)
12274_2022_4808_MOESM1_ESM.pdf (427.7 KB)

References

[1]

Virani, S. S.; Alonso, A.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S. S.; Delling, F. N. et al. Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation 2020, 141, e139–e596.

[2]

Roy, P.; Orecchioni, M.; Ley, K. How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat. Rev. Immunol. 2022, 22, 251–265.

[3]

He, H. L.; Wang, J.; Yannie, P. J.; Korzun, W. J.; Yang, H.; Ghosh, S. Nanoparticle-based “two-pronged” approach to regress atherosclerosis by simultaneous modulation of cholesterol influx and efflux. Biomaterials 2020, 260, 120333.

[4]

Wei, X. L.; Ying, M.; Dehaini, D.; Su, Y. Y.; Kroll, A. V.; Zhou, J. R.; Gao, W. W.; Fang, R. H.; Chien, S.; Zhang, L. F. Nanoparticle functionalization with platelet membrane enables multifactored biological targeting and detection of atherosclerosis. ACS Nano 2018, 12, 109–116.

[5]

Pham, L. M.; Kim, E. C.; Ou, W. Q.; Phung, C. D.; Nguyen, T. T.; Pham, T. T.; Poudel, K.; Gautam, M.; Nguyen, H. T.; Jeong, J. H. et al. Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials 2021, 269, 120677.

[6]

Kanthi, Y.; De La Zerda, A.; Smith, B. R. Nanotherapeutic shots through the heart of plaque. ACS Nano 2020, 14, 1236–1242.

[7]

Chen, L.; Jiang, Z.; Akakuru, O. U.; Yang, L.; Li, J.; Ma, S.; Wu, A. Recent progress in the detection and treatment of atherosclerosis by nanoparticles. Mater. Today Chem. 2020, 17, 100280.

[8]

Simin, D.; Milutinović, D.; Turkulov, V.; Brkić, S. Incidence, severity and risk factors of peripheral intravenous cannula-induced complications: An observational prospective study. J. Clin. Nurs. 2019, 28, 1585–1599.

[9]

Du, Y. Q.; Tian, C. T.; Wang, M. L.; Huang, D.; Wei, W.; Liu, Y.; Li, L.; Sun, B. J.; Kou, L. F.; Kan, Q. M. et al. Dipeptide-modified nanoparticles to facilitate oral docetaxel delivery: New insights into PepT1-mediated targeting strategy. Drug Deliv. 2018, 25, 1403–1413.

[10]

Wu, L.; Liu, M.; Shan, W.; Zhu, X.; Li, L. J.; Zhang, Z. R.; Huang, Y. Bioinspired butyrate-functionalized nanovehicles for targeted oral delivery of biomacromolecular drugs. J. Control. Release 2017, 262, 273–283.

[11]

Zhang, L. P.; Shi, Y. N.; Song, Y. N.; Duan, D. Y.; Zhang, X. M.; Sun, K. X.; Li, Y. X. Tf ligand-receptor-mediated exenatide-Zn2+ complex oral-delivery system for penetration enhancement of exenatide. J. Drug Target. 2018, 26, 931–940.

[12]

Verma, A.; Sharma, S.; Gupta, P. K.; Singh, A.; Teja, B. V.; Dwivedi, P.; Gupta, G. K.; Trivedi, R.; Mishra, P. R. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin. Acta Biomater. 2016, 31, 288–300.

[13]

Cheng, H. B.; Guo, S.; Cui, Z. X.; Zhang, X.; Huo, Y. N.; Guan, J.; Mao, S. R. Design of folic acid decorated virus-mimicking nanoparticles for enhanced oral insulin delivery. Int. J. Pharm. 2021, 596, 120297.

[14]

El Leithy, E. S.; Abdel-Bar, H. M.; Ali, R. A. M. Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. Int. J. Pharm. 2019, 571, 118708.

[15]

Naserifar, M.; Hosseinzadeh, H.; Abnous, K.; Mohammadi, M.; Taghdisi, S. M.; Ramezani, M.; Alibolandi, M. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci. 2020, 262, 118555.

[16]

Elz, A. S.; Trevaskis, N. L.; Porter, C. J. H.; Bowen, J. M.; Prestidge, C. A. Smart design approaches for orally administered lipophilic prodrugs to promote lymphatic transport. J. Control. Release 2022, 341, 676–701.

[17]

Khadke, S.; Roces, C. B.; Cameron, A.; Devitt, A.; Perrie, Y. Formulation and manufacturing of lymphatic targeting liposomes using microfluidics. J. Control. Release 2019, 307, 211–220.

[18]

Subramanian, P. Lipid-based nanocarrier system for the effective delivery of nutraceuticals. Molecules 2021, 26, 5510.

[19]

Moore, K. J.; Sheedy, F. J.; Fisher, E. A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721.

[20]

Moore, K. J.; Koplev, S.; Fisher, E. A.; Tabas, I.; Björkegren, J. L. M.; Doran, A. C.; Kovacic, J. C. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (part 2). J. Am. Coll. Cardiol. 2018, 72, 2181–2197.

[21]

Barrett, T. J. Macrophages in atherosclerosis regression. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 20–33.

[22]

Li, W. S.; Wang, C. Y.; Peng, J. Y.; Liang, J.; Jin, Y.; Liu, Q.; Meng, Q.; Liu, K. X.; Sun, H. J. Naringin inhibits TNF-α induced oxidative stress and inflammatory response in HUVECs via Nox4/NF-κB and PI3K/Akt pathways. Curr. Pharm. Biotechnol. 2014, 15, 1173–1182.

[23]

Li, Z. L.; Yang, B. C.; Gao, M.; Xiao, X. F.; Zhao, S. P.; Liu, Z. L. Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARγ/miR-21 axis. Mol. Ther. Nucleic Acids 2021, 25, 502–514.

[24]

Tahara, K.; Sakai, T.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int. J. Pharm. 2008, 354, 210–216.

[25]

Zhang, L. F.; Chan, J. M.; Gu, F. X.; Rhee, J. W.; Wang, A. Z.; Radovic-Moreno, A. F.; Alexis, F.; Langer, R.; Farokhzad, O. C. Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform. ACS Nano 2008, 2, 1696–1702.

[26]

Xu, Q. G.; Ensign, L. M.; Boylan, N. J.; Schön, A.; Gong, X. Q.; Yang, J. C.; Lamb, N. W.; Cai, S. T.; Yu, T.; Freire, E. et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217–9227.

[27]

Wang, Y.; Zhao, Y. T.; Cui, Y.; Zhao, Q. F.; Zhang, Q.; Musetti, S.; Kinghorn, K. A.; Wang, S. L. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomater. 2018, 65, 405–416.

[28]

Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishadi, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F. A. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J. Control. Release 2016, 229, 10–22.

[29]

Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles:An overview of biomedical applications. J. Control. Release 2012, 161, 505–522.

[30]

Lipka, J.; Semmler-Behnke, M.; Sperling, R. A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W. J.; Kreyling, W. G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 2010, 31, 6574–6581.

[31]

Lee, H. W.; Choi, H. J.; Ha, S. J.; Lee, K. T.; Kwon, Y. G. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim. Biophys. Acta Rev. Cancer 2013, 1835, 170–179.

[32]

Guo, J. W.; Li, D. D.; Tao, H.; Li, G.; Liu, R. F.; Dou, Y.; Jin, T. T.; Li, L. L.; Huang, J.; Hu, H. Y. et al. Cyclodextrin-derived intrinsically bioactive nanoparticles for treatment of acute and chronic inflammatory diseases. Adv. Mater. 2019, 31, 1904607.

[33]

Burke, A. C.; Sutherland, B. G.; Telford, D. E.; Morrow, M. R.; Sawyez, C. G.; Edwards, J. Y.; Huff, M. W. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr−/− mice. Atherosclerosis 2019, 286, 60–70.

Nano Research
Pages 925-937
Cite this article:
Guo M, He Z, Jin Z, et al. Oral nanoparticles containing naringenin suppress atherosclerotic progression by targeting delivery to plaque macrophages. Nano Research, 2023, 16(1): 925-937. https://doi.org/10.1007/s12274-022-4808-2
Topics:

919

Views

8

Crossref

7

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 04 May 2022
Revised: 24 July 2022
Accepted: 25 July 2022
Published: 08 September 2022
© Tsinghua University Press 2022
Return